ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement like properties in Spin-Orbit Coupled Ultra Cold Atom and violation of Bell like Inequality

138   0   0.0 ( 0 )
 نشر من قبل Sankalpa Ghosh
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the general quantum state of synthetically spin-orbit coupled ultra cold bosonic atom whose condensate was experimentally created recently ( Y. J. Lin {it et al.}, Nature, {bf 471}, 83, (2011)), shows entanglement between motional degrees of freedom ( momentum) and internal degrees of freedom (hyperfine spin). We demonstrate the violation of Bell-like inequality (CHSH) for such states that provides a unique opportunity to verify fundamental principle like quantum non-contextuality for commutating observables which are not spatially separated. We analyze in detail the Rabi oscillation executed by such atom-laser system and how that influneces quantities like entanglement entropy, violation of Bell like Inequality etc. We also discuss the implication of our result in testing the quantum non-contextuality and Bells Inequality vioaltion by macroscopic quantum object like Bose-Einstein Condensate of ultra cold atoms.



قيم البحث

اقرأ أيضاً

161 - Lixiang Chen , Weilong She 2009
Single photons emerging from q-plates (or Pancharatnam-Berry phase optical element) exhibit entanglement in the degrees of freedom of spin and orbital angular momentum. We put forward an experimental scheme for probing the spin-orbit correlations of single photons. It is found that the Clauser-Horne-Shimony-Holt (CHSH) parameter S for the single-photon spin-orbit entangled state could be up to 2.828, evidently violating the Bell-like inequality and thus invalidating the noncontextual hidden variable (NCHV) theories.
Time evolution of spin-orbit-coupled cold atoms in an optical lattice is studied, with a two-band energy spectrum having two avoided crossings. A force is applied such that the atoms experience two consecutive Landau-Zener tunnelings while transversi ng the avoided crossings. Stuckelberg interference arises from the phase accumulated during the adiabatic evolution between the two tunnelings. This phase is gauge field-dependent and thus provides new opportunities to measure the synthetic gauge field, which is verified via calculation of spin transition probabilities after a double passage process. Time-dependent and time-averaged spin probabilities are derived, in which resonances are found. We also demonstrate chiral Bloch oscillation and rich spin-momentum locking behavior in this system.
263 - Yong Xu , Chunlei Qu , Ming Gong 2013
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a superconducting state with non-zero total momentum Cooper pairs in a large magnetic field, was first predicted about 50 years ago, and since then became an important concept in many branches of phy sics. Despite intensive search in various materials, unambiguous experimental evidence for the FFLO phase is still lacking in experiments. In this paper, we show that both FF (uniform order parameter with plane-wave phase) and LO phase (spatially varying order parameter amplitude) can be observed using fermionic cold atoms in spin-orbit coupled optical lattices. The increasing spin-orbit coupling enhances the FF phase over the LO phase. The coexistence of superfluid and magnetic orders is also found in the normal BCS phase. The pairing mechanism for different phases is understood by visualizing superfluid pairing densities in different spin-orbit bands. The possibility of observing similar physics using spin-orbit coupled superconducting ultra-thin films is also discussed.
We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dim ension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation, and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wavepackets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit coupled system can be viewed as a direct effect of the phase-space Berry curvature.
181 - Junyi Zhang 2013
This article is a report of Projet bibliographique of M1 at Ecole Normale Superieure. In this article we reviewed the historical developments in artificial gauge fields and spin-orbit couplings in cold atom systems. We resorted to origins of literatu res to trace the ideas of the developments. For pedagogical purposes, we tried to work out examples carefully and clearly, to verified the validity of various approximations and arguments in detail, and to give clear physical and mathematical pictures of the problems that we discussed. The first part of this article introduced the fundamental concepts of Berry phase and Jaynes-Cummings model. The second part reviewed two schemes to generate artificial gauge fields with N-pod scheme in cold atom systems. The first one is based on dressed-atom picture which provide a method to generate non-Abelian gauge fields with dark states. The second one is about rotating scheme which is achieved earlier historically. Non-Abelian gauge field inevitably leads to spin-orbit coupling. We reviewed some developments in achieve spin-orbital coupling theoretically and experimentally. The fourth part was devoted to recently developed idea of optical flux lattice that provides a possibility to reach the strongly correlated regime in cold atom systems. We developed a geometrical interpretation based on Coopers theory. Some useful formulae and their proofs were listed in the Appendix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا