ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterising exoplanets and their environment with UV transmission spectroscopy

175   0   0.0 ( 0 )
 نشر من قبل Luca Fossati
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exoplanet science is now in its full expansion, particularly after the CoRoT and Kepler space missions that led us to the discovery of thousands of extra-solar planets. The last decade has taught us that UV observations play a major role in advancing our understanding of planets and of their host stars, but the necessary UV observations can be carried out only by HST, and this is going to be the case for many years to come. It is therefore crucial to build a treasury data archive of UV exoplanet observations formed by a dozen golden systems for which observations will be available from the UV to the infrared. Only in this way we will be able to fully exploit JWST observations for exoplanet science, one of the key JWST science case.



قيم البحث

اقرأ أيضاً

Transmission spectra probe the atmospheres of transiting exoplanets, but these observations are also subject to signals introduced by magnetic active regions on host stars. Here we outline scientific opportunities in the next decade for providing use ful constraints on stellar photospheres and inform interpretations of transmission spectra of the smallest ($R<4,R_{odot}$) exoplanets. We identify and discuss four primary opportunities: (1) refining stellar magnetic active region properties through exoplanet crossing events; (2) spectral decomposition of active exoplanet host stars; (3) joint retrievals of stellar photospheric and planetary atmospheric properties with studies of transmission spectra; and (4) continued visual transmission spectroscopy studies to complement longer-wavelength studies from $textit{JWST}$. We make five recommendations to the Astro2020 Decadal Survey Committee: (1) identify the transit light source (TLS) effect as a challenge to precise exoplanet transmission spectroscopy and an opportunity ripe for scientific advancement in the coming decade; (2) include characterization of host star photospheric heterogeneity as part of a comprehensive research strategy for studying transiting exoplanets; (3) support the construction of ground-based extremely large telescopes (ELTs); (4) support multi-disciplinary research teams that bring together the heliophysics, stellar physics, and exoplanet communities to further exploit transiting exoplanets as spatial probes of stellar photospheres; and (5) support visual transmission spectroscopy efforts as complements to longer-wavelength observational campaigns with $textit{JWST}$.
154 - Tristan Guillot 2014
Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-t ype stars. For masses above that of Saturn, transiting exoplanets have large radii indicative of the presence of a massive hydrogen-helium envelope. Theoretical models show that this envelope progressively cools and contracts with a rate of energy loss inversely proportional to the planetary age. The combined measurement of planetary mass, radius and a constraint on the (stellar) age enables a global determination of the amount of heavy elements present in the planet interior. The comparison with stellar metallicity shows a correlation between the two, indicating that accretion played a crucial role in the formation of planets. The dynamical evolution of exoplanets also depends on the properties of the central star. We show that the lack of massive giant planets and brown dwarfs in close orbit around G-dwarfs and their presence around F-dwarfs are probably tied to the different properties of dissipation in the stellar interiors. Both the evolution and the composition of stars and planets are intimately linked.
Transmission spectroscopy facilitates the detection of molecules and/or clouds in the atmospheres of exoplanets. Such studies rely heavily on space-based or large ground-based observatories, as one needs to perform time- resolved, high signal-to-nois e spectroscopy. The FORS2 instrument at ESOs Very Large Telescope is the obvious choice for performing such studies, and was indeed pioneering the field in 2010. After that, however, it was shown to suffer from systematic errors caused by the Longitudinal Atmospheric Dispersion Corrector (LADC). This was successfully addressed, leading to a renewed interest for this instrument as shown by the number of proposals submitted to perform transmission spectroscopy of exoplanets. We present here the context, the problem and how we solved it, as well as the recent results obtained. We finish by providing tips for an optimum strategy to do transmission spectroscopy with FORS2, in the hope that FORS2 may become the instrument of choice for ground-based transmission spectroscopy of exoplanets.
Several transiting hot Jupiters orbit relatively inactive main-sequence stars. For some of those, the logRHK activity parameter lies below the basal level (-5.1). Two explanations have been proposed so far: (i) the planet affects the stellar dynamo, (ii) the logRHK measurements are biased by extrinsic absorption, either by the interstellar medium (ISM) or by material local to the system. We present here Hubble Space Telescope/COS far-UV spectra of WASP-13, which hosts an inflated hot Jupiter and has a measured logRHK value (-5.26), well below the basal level. From the stars spectral energy distribution we obtain an extinction E(B-V) = 0.045+/-0.025 mag and a distance d = 232+/-8 pc. We detect at >4 sigma lines belonging to three different ionization states of carbon (C1, C2, and C4) and the Si4 doublet at ~3 sigma. Using far-UV spectra of nearby early G-type stars of known age, we derive a C4/C1 flux ratio-age relation, from which we estimate WASP-13s age to be 5.1+/-2.0 Gyr. We rescale the solar irradiance reference spectrum to match the flux of the C4 1548 doublet. By integrating the rescaled solar spectrum, we obtain an XUV flux at 1 AU of 5.4 erg s^-1 cm^-2. We use a detailed model of the planets upper atmosphere, deriving a mass-loss rate of 1.5x10^11 g s^-1. Despite the low logRHK value, the star shows a far-UV spectrum typical of middle-aged solar-type stars, pointing toward the presence of significant extrinsic absorption. The analysis of a high-resolution spectrum of the Ca2H&K lines indicates that the ISM absorption could be the origin of the low logRHK value. Nevertheless, the large uncertainty in the Ca2 ISM abundance does not allow us to firmly exclude the presence of circumstellar gas.
The ExTrA facility, located at La Silla observatory, will consist of a near-infrared multi-object spectrograph fed by three 60-cm telescopes. ExTrA will add the spectroscopic resolution to the traditional differential photometry method. This shall en able the fine correction of color-dependent systematics that would otherwise hinder ground-based observations. With both this novel method and an infrared-enabled efficiency, ExTrA aims to find transiting telluric planets orbiting in the habitable zone of bright nearby M dwarfs. It shall have the versatility to do so by running its own independent survey and also by concurrently following-up on the space candidates unveiled by K2 and TESS. The exoplanets detected by ExTrA will be amenable to atmospheric characterisation with VLTs, JWST, and ELTs and could give our first peek into an exo-life laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا