ﻻ يوجد ملخص باللغة العربية
We report MAXI and Swift observations of short-term spectral softenings of the galactic black-hole X-ray binary Swift J1753.5-0127 in the low/hard state. These softening events are characterized by a simultaneous increase of soft X-rays (2-4 keV) and a decrease of hard X-rays (15-50 keV) lasting for a few tens of days. The X-ray energy spectra during the softening periods can be reproduced with a model consisting of a multi-color disk blackbody and its Comptonized component. The fraction of the Comptonized component decreased from 0.30 to 0.15 when the spectrum became softer; meanwhile the inner disk temperature (Tin) increased from 0.2 to 0.45 keV. These results imply that the softening events are triggered by a short-term increase of the mass accretion rate. During the observed spectral softening events, the disk flux (F) and Tin did not obey the relation: F is proportional to Tin^4, suggesting that the inner disk radius does not reach the innermost stable circular orbit.
We present our monitoring campaign of the outburst of the black-hole candidate Swift J1753.5-0127, observed with the Rossi X-ray Timing Explorer and the Swift satellites. After ~4.5 years since its discovery, the source had a transition to the hard i
We report on simultaneous XMM-Newton and RXTE observations of the stellar-mass black hole candidate SWIFT J1753.5-0127. The source was observed in the low-hard state, during the decline of a hard outburst. The inner accretion disk is commonly assumed
We present a spectral analysis of the black hole candidate and X-ray transient source Swift J1753.5 0127 making use of simultaneous observations of XMM-Newton and Rossi X-ray Timing Explorer (RXTE) in 2006, when the source was in outburst. The aim of
We report on radio and X-ray monitoring observations of the BHC Swift J1753.5-0127 taken over a ~10 year period. Presented are daily radio observations at 15 GHz with the AMI-LA and X-ray data from Swift XRT and BAT. Also presented is a deep 2hr JVLA
We present Suzaku observations of the Galactic black hole candidate Swift J1753.5-0127 in the low-hard state. The broadband coverage of Suzaku enables us to detect the source over the energy range 0.6 -- 250 keV. The broadband spectrum (2 -- 250 keV)