ﻻ يوجد ملخص باللغة العربية
We report intrinsic tunnelling data for mesa structures fabricated on three over- and optimally-doped $rm{Bi_{2.15}Sr_{1.85}CaCu_{2}O_{8+delta}}$ crystals with transition temperatures of 86-78~K and 0.16-0.19~holes per CuO$_2$ unit, for a wide range of temperature ($T$) and applied magnetic field ($H$), primarily focusing on one over-doped crystal(OD80). The differential conductance above the gap edge shows clear dip structure which is highly suggestive of strong coupling to a narrow boson mode. Data below the gap edge suggest that tunnelling is weaker near the nodes of the d-wave gap and give clear evidence for strong $T$-dependent pair breaking. These findings could help theorists make a detailed Eliashberg analysis and thereby contribute towards understanding the pairing mechanism. We show that for our OD80 crystal the gap above $T_c$ although large, is reasonably consistent with the theory of superconducting fluctuations.
Anomalously high and sharp peaks in the conductance of intrinsic Josephson junctions in Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ (Bi2212) mesas have been universally interpreted as superconducting energy gaps, but here we show they are a result of hea
Single atom manipulation within doped correlated electron systems would be highly beneficial to disentangle the influence of dopants, structural defects and crystallographic characteristics on their local electronic states. Unfortunately, their high
Scanning Hall probe and local Hall magnetometry measurements have been used to investigate flux distributions in large mesoscopic superconducting disks with sizes that lie near the crossover between the bulk and mesoscopic vortex regimes. Results obt
We present the ab-plane optical conductivity of four single crystals of Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ (Bi2212) with different carrier doping levels from the strongly underdoped to the strongly overdoped range with $T_c$=66, 88, 77, and 67 K
Using low-photon energy angle-resolved photoemission (ARPES), we study the low-energy dispersion along the nodal (pi, pi) direction in Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) as a function of temperature. Less than 10 meV below the Fermi energy, the hig