ﻻ يوجد ملخص باللغة العربية
We present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination, and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factorization leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite. The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK -- STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.
Derivatives play a critical role in computational statistics, examples being Bayesian inference using Hamiltonian Monte Carlo sampling and the training of neural networks. Automatic differentiation is a powerful tool to automate the calculation of de
Updating a linear least squares solution can be critical for near real-time signalprocessing applications. The Greville algorithm proposes a simple formula for updating the pseudoinverse of a matrix A $in$ R nxm with rank r. In this paper, we explici
We consider the problem of sampling from solutions defined by a set of hard constraints on a combinatorial space. We propose a new sampling technique that, while enforcing a uniform exploration of the search space, leverages the reasoning power of a
Computational implementations for solving systems of linear equations often rely on a one-size-fits-all approach based on LU decomposition of dense matrices stored in column-major format. Such solvers are typically implemented with the aid of the xGE
Modelling of multivariate densities is a core component in many signal processing, pattern recognition and machine learning applications. The modelling is often done via Gaussian mixture models (GMMs), which use computationally expensive and potentia