ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous fluctuations of transition dipole moment orientation in OLED triplet emitters

356   0   0.0 ( 0 )
 نشر من قبل Jan Vogelsang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The efficiency of an organic light-emitting diode (OLED) depends on the microscopic orientation of transition dipole moments of the molecular emitters. The most effective materials used for light generation have threefold symmetry, which prohibit a priori determination of dipole orientation due to the degeneracy of the fundamental transition. Single-molecule spectroscopy reveals that the model triplet emitter tris(2-phenylisoquinoline)iridium(III) (Ir(piq)3) does not behave as a linear dipole, radiating with lower polarization anisotropy than expected. Spontaneous symmetry breaking occurs in the excited state, leading to a random selection of one of the three ligands to form a charge transfer state with the metal. This non-deterministic localization is revealed in switching of the degree of linear polarization of phosphorescence. Polarization scrambling likely raises out-coupling efficiency and should be taken into account when deriving molecular orientation of the guest emitter within the OLED host from ensemble angular emission profiles.



قيم البحث

اقرأ أيضاً

The $CP$ violation in the neutrino transition electromagnetic dipole moment is discussed in the context of the Standard Model with an arbitrary number of right-handed singlet neutrinos. A full one-loop calculation of the neutrino electromagnetic form factors is performed in the Feynman gauge. A non-zero $CP$ asymmetry is generated by a required threshold condition for the neutrino masses along with non-vanishing $CP$ violating phases in the lepton flavour mixing matrix. We follow the paradiagm of $CP$ violation in neutrino oscillations to parametrise the flavour mixing contribution into a series of Jarlskog-like parameters. This formalism is then applied to a minimal seesaw model with two heavy right-handed neutrinos denoted $N_1$ and $N_2$. We observe that the $CP$ asymmetries for decays into light neutrinos $Nto ugamma$ are extremely suppressed, maximally around $10^{-17}$. However the $CP$ asymmetry for $N_2 to N_1 gamma$ can reach of order unity. Even if the Dirac $CP$ phase $delta$ is the only source of $CP$ violation, a large $CP$ asymmetry around $10^{-5}$-$10^{-3}$ is comfortably achieved.
We have performed Fourier transform microwave spectroscopy of benzonitrile, without and with applied electric fields. From the field-free hyperfine-resolved microwave transitions we simultaneously derive accurate values for the rotational constants, centrifugal distortion constants, and nitrogen nuclear quadrupole coupling constants of benzonitrile. By measuring the Stark shift of selected hyperfine transitions the electric dipole moment of benzonitrile is determined to $mu=mu_a=4.5152 (68)$ D.
Quantum fluctuations in the QED vacuum generate non-linear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of non-linearity in QED.
Alignment and orientation of molecules by intense, ultrashort laser fields are crucial for a variety of applications in physics and chemistry. These include control of high harmonics generation, molecular orbitals tomography, control of molecular pho toionization and dissociation processes, production of molecular movies with the help of X-ray free-electron laser sources and ultrafast electron diffraction of relativistic electrons. While the dynamics of laser-induced molecular alignment has been extensively studied and demonstrated, molecular orientation is a much more challenging task, especially for asymmetric-top molecules. Here we report the first experimental demonstration of a field-free, all-optical three-dimensional orientation of asymmetric-top molecules by means of phase-locked cross-polarized two-color laser pulses. In addition to the conventional integrated orientation factor, we report the differential degree of orientation which is not amenable to optical measurements, but is readily accessible in our angle-resolved imaging technique. Our scheme applies to a wide class of asymmetric molecules and opens new ways towards controlling their orientation, eventually leading to direct imaging of structure of gas-phase molecules using advanced free electron laser beams with extremely high spatiotemporal resolution.
We explore a pure optical method for enantioselective orientation of chiral molecules by means of laser fields with twisted polarization. Several field implementations are considered, including a pair of delayed cross-polarized laser pulses, an optic al centrifuge, and polarization shaped pulses. The underlying classical orientation mechanism common for all these fields is discussed, and its operation is demonstrated for a range of chiral molecules of various complexity: hydrogen thioperoxide (${rm HSOH}$), propylene oxide (${rm CH_{3}CHCH_{2}O}$) and ethyl oxirane (${rm CH_{3}CH_{2}CHCH_{2}O}$). The presented results demonstrate generality, versatility and robustness of this optical method for manipulating molecular enantiomers in the gas phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا