ﻻ يوجد ملخص باللغة العربية
The efficiency of an organic light-emitting diode (OLED) depends on the microscopic orientation of transition dipole moments of the molecular emitters. The most effective materials used for light generation have threefold symmetry, which prohibit a priori determination of dipole orientation due to the degeneracy of the fundamental transition. Single-molecule spectroscopy reveals that the model triplet emitter tris(2-phenylisoquinoline)iridium(III) (Ir(piq)3) does not behave as a linear dipole, radiating with lower polarization anisotropy than expected. Spontaneous symmetry breaking occurs in the excited state, leading to a random selection of one of the three ligands to form a charge transfer state with the metal. This non-deterministic localization is revealed in switching of the degree of linear polarization of phosphorescence. Polarization scrambling likely raises out-coupling efficiency and should be taken into account when deriving molecular orientation of the guest emitter within the OLED host from ensemble angular emission profiles.
The $CP$ violation in the neutrino transition electromagnetic dipole moment is discussed in the context of the Standard Model with an arbitrary number of right-handed singlet neutrinos. A full one-loop calculation of the neutrino electromagnetic form
We have performed Fourier transform microwave spectroscopy of benzonitrile, without and with applied electric fields. From the field-free hyperfine-resolved microwave transitions we simultaneously derive accurate values for the rotational constants,
Quantum fluctuations in the QED vacuum generate non-linear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric
Alignment and orientation of molecules by intense, ultrashort laser fields are crucial for a variety of applications in physics and chemistry. These include control of high harmonics generation, molecular orbitals tomography, control of molecular pho
We explore a pure optical method for enantioselective orientation of chiral molecules by means of laser fields with twisted polarization. Several field implementations are considered, including a pair of delayed cross-polarized laser pulses, an optic