ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable spin-orbit coupling synthesized with a modulating gradient magnetic field

110   0   0.0 ( 0 )
 نشر من قبل Xinyu Luo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of tunable spin-orbit coupling (SOC) for ultracold $^{87}$Rb atoms in hyperfine spin-1 states. Different from most earlier experiments where atomic SOC of pseudo-spin-1/2 are synthesized with Raman coupling lasers, the scheme we demonstrate employs a gradient magnetic field (GMF) with ground state atoms and is immune to atomic spontaneous emission. The effect of the SOC is confirmed through the studies of: 1) the collective dipole oscillation of an atomic condensate in a harmonic trap after the synthesized SOC is abruptly turned on; and 2) the minimum energy state at a finite adiabatically adjusted momentum when the SOC strength is slowly ramped up. The coherence properties of the spinor condensates remain very good after interacting with modulating GMFs, which prompts the enthusiastic claim that our work provides a new repertoire for synthesized gauge fields aimed at quantum simulation studies with cold atoms.



قيم البحث

اقرأ أيضاً

416 - Zhi-Fang Xu , Li You , 2013
We discuss a general scheme for creating atomic spin-orbit coupling (SOC) such as the Rashba or Dresselhaus types using magnetic-field-gradient pulses. In contrast to conventional schemes based on adiabatic center-of-mass motion with atomic internal states restricted to a dressed-state subspace, our scheme works for the complete subspace of a hyperfine-spin manifold by utilizing the coupling between the atomic magnetic moment and external magnetic fields. A spatially dependent pulsed magnetic field acts as an internal-state-dependent impulse, thereby coupling the atomic internal spin with its orbital center-of-mass motion, as in the Einstein-de Haas effect. This effective coupling can be dynamically manipulated to synthesize SOC of any type (Rashba, Dresselhaus, or any linear combination thereof). Our scheme can be realized with most experimental setups of ultracold atoms and is especially suited for atoms with zero nuclear spins.
Spin-orbit coupling (SOC) is an essential ingredient in topological materials, conventional and quantum-gas based alike.~Engineered spin-orbit coupling in ultracold atom systems --unique in their experimental control and measurement opportunities-- p rovides a major opportunity to investigate and understand topological phenomena.~Here we experimentally demonstrate and theoretically analyze a technique for controlling SOC in a two component Bose-Einstein condensate using amplitude-modulated Raman coupling.
126 - L. Wen , Q. Sun , H. Q. Wang 2012
We systematically investigate the weakly trapped spin-1 Bose-Einstein condensates with spin-orbit coupling in an external Zeeman field. We find that the mean-field ground state favors either a magnetized standing wave phase or plane wave phase when t he strength of Zeeman field is below a critical value related to the strength of spin-orbit coupling. Zeeman field can induce the phase transition between standing wave and plane wave phases, and we determine the phase boundary analytically and numerically. The magnetization of these two phases responds to the external magnetic field in a very unique manner, the linear Zeeman effect magnetizes the standing wave phase along the direction of the magnetic field, but the quadratic one demagnetizes the plane wave phase. When the strength of Zeeman field surpasses the critical value, the system is completely polarized to a ferromagnetic state or polar state with zero momentum.
147 - Hui Zhai 2014
This review focuses on recent developments on studying synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial direct ions, and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and their consequences in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking give rise to intriguing behaviors of superfluid critical velocity and novel quantum dynamics; and mixing of two-body singlet and triplet states yields novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids, and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas or high spin quantum gases. Finally we also point out major challenges and possible future directions.
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss the role played by the systems symmetries. We also discuss experimentally-viable implementations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا