ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Parametric Instability in Advanced LIGO

389   0   0.0 ( 0 )
 نشر من قبل Matthew Evans
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress.



قيم البحث

اقرأ أيضاً

We describe the methods used to construct the aligned-spin template bank of gravitational waveforms used by the GstLAL-based inspiral pipeline to analyze data from the second observing run of Advanced LIGO and the first observing run of advanced Virg o. The bank expands upon the parameter space covered during the first observing run, including coverage for merging compact binary systems with total mass between 2 $mathrm{M}_{odot}$ and 400 $mathrm{M}_{odot}$ and mass ratios between 1 and 97.988. Thus the systems targeted include merging neutron star-neutron star systems, neutron star-black hole binaries, and black hole-black hole binaries expanding into the intermediate-mass range. Component masses less than 2 $mathrm{M}_{odot}$ have allowed (anti-)aligned spins between $pm0.05$ while component masses greater than 2 $mathrm{M}_{odot}$ have allowed (anti-)aligned between $pm0.999$. The bank placement technique combines a stochastic method with a new grid-bank method to better isolate noisy templates, resulting in a total of 677,000 templates.
The sensitivity of the Advanced LIGO detectors to gravitational waves can be affected by environmental disturbances external to the detectors themselves. Since the transition from the former initial LIGO phase, many improvements have been made to the equipment and techniques used to investigate these environmental effects. These methods have aided in tracking down and mitigating noise sources throughout the first three observing runs of the advanced detector era, keeping the ambient contribution of environmental noise below the background noise levels of the detectors. In this paper we describe the methods used and how they have led to the mitigation of noise sources, the role that environmental monitoring has played in the validation of gravitational wave events, and plans for future observing runs.
The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the ob servation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$sqrt{textrm{Hz}}$ with accuracy and precision of better than 1 %.
The raw outputs of the detectors within the Advanced Laser Interferometer Gravitational-Wave Observatory need to be calibrated in order to produce the estimate of the dimensionless strain used for astrophysical analyses. The two detectors have been u pgraded since the second observing run and finished the year-long third observing run. Understanding, accounting, and/or compensating for the complex-valued response of each part of the upgraded detectors improves the overall accuracy of the estimated detector response to gravitational waves. We describe improved understanding and methods used to quantify the response of each detector, with a dedicated effort to define all places where systematic error plays a role. We use the detectors as they stand in the first half (six months) of the third observing run to demonstrate how each identified systematic error impacts the estimated strain and constrain the statistical uncertainty therein. For this time period, we estimate the upper limit on systematic error and associated uncertainty to be $< 7%$ in magnitude and $< 4$ deg in phase ($68%$ confidence interval) in the most sensitive frequency band 20-2000 Hz. The systematic error alone is estimated at levels of $< 2%$ in magnitude and $< 2$ deg in phase.
A key action for enhancing the sensitivity of gravitational wave (GW) detectors based on laser interferometry is to increase the laser power. However, in such a high-power regime, a nonlinear optomechanical phenomenon called parametric instability (P I) leads to the amplification of the mirrors vibrational modes preventing the detector functioning. Thus this phenomenon limits the detectors maximum power and so its performances. Our group has started an experimental research program aiming at realizing a exible and active mitigation system, based on the radiation pressure applied by an auxiliary laser. A summary on the PI mitigation techniques will be presented, we will explain the working principle of the system that we are implementing and report about the first experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا