ﻻ يوجد ملخص باللغة العربية
Given a set of integers with no three in arithmetic progression, we construct a Stanley sequence by adding integers greedily so that no arithmetic progression is formed. This paper offers two main contributions to the theory of Stanley sequences. First, we characterize well-structured Stanley sequences as solutions to constraints in modular arithmetic, defining the modular Stanley sequences. Second, we introduce the basic Stanley sequences, where elements arise as the sums of subsets of a basis sequence, which in the simplest case is the powers of 3. Applications of our results include the construction of Stanley sequences with arbitrarily large gaps between terms, answering a weak version of a problem by ErdH{o}s et al. Finally, we generalize many results about Stanley sequences to $p$-free sequences, where $p$ is any odd prime.
Given a set of integers containing no 3-term arithmetic progressions, one constructs a Stanley sequence by choosing integers greedily without forming such a progression. Independent Stanley sequences are a well-structured class of Stanley sequences w
We prove that the uniform recurrence of morphic sequences is decidable. For this we show that the number of derived sequences of uniformly recurrent morphic sequences is bounded. As a corollary we obtain that uniformly recurrent morphic sequences are primitive substitutive sequences.
Recently, Yan and the first named author investigated systematically the enumeration of inversion or ascent sequences avoiding vincular patterns of length $3$, where two of the three letters are required to be adjacent. They established many connecti
In network modeling of complex systems one is often required to sample random realizations of networks that obey a given set of constraints, usually in form of graph measures. A much studied class of problems targets uniform sampling of simple graphs
Given a finite set of nonnegative integers A with no 3-term arithmetic progressions, the Stanley sequence generated by A, denoted S(A), is the infinite set created by beginning with A and then greedily including strictly larger integers which do not