ترغب بنشر مسار تعليمي؟ اضغط هنا

The JCMT Gould Belt Survey: First results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population

157   0   0.0 ( 0 )
 نشر من قبل Kate Pattle
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) with the SCUBA-2 instrument. We demonstrate methods for combining these data with previous HARP CO, Herschel, and IRAM N$_{2}$H$^{+}$ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus. We produce a catalogue of all of the sources found by SCUBA-2. We separate these into protostars and starless cores. We list all of the starless cores and perform a full virial analysis, including external pressure. This is the first time that external pressure has been included in this level of detail. We find that the majority of our cores are either bound or virialised. Gravitational energy and external pressure are on average of a similar order of magnitude, but with some variation from region to region. We find that cores in the Oph A region are gravitationally bound prestellar cores, while cores in the Oph C and E regions are pressure-confined. We determine that N$_{2}$H$^{+}$ is a good tracer of the bound material of prestellar cores, although we find some evidence for N$_{2}$H$^{+}$ freeze-out at the very highest core densities. We find that non-thermal linewidths decrease substantially between the gas traced by C$^{18}$O and that traced by N$_{2}$H$^{+}$, indicating the dissipation of turbulence at higher densities. We find that the critical Bonnor-Ebert stability criterion is not a good indicator of the boundedness of our cores. We detect the pre-brown dwarf candidate Oph B-11 and find a flux density and mass consistent with previous work. We discuss regional variations in the nature of the cores and find further support for our previous hypothesis of a global evolutionary gradient across the cloud from southwest to northeast, indicating sequential star formation across the region.



قيم البحث

اقرأ أيضاً

We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starles s cores and protostars. We determine masses and densities for each of our sources, using source temperatures determined by the Herschel Gould Belt Survey. We compare the properties of starless cores in four different molecular clouds: L1147/58, L1172/74, L1251 and L1228. We find that the core mass functions for each region typically show shallower-than-Salpeter behaviour. We find that L1147/58 and L1228 have a high ratio of starless cores to Class II protostars, while L1251 and L1174 have a low ratio, consistent with the latter regions being more active sites of current star formation, while the former are forming stars less actively. We determine that, if modelled as thermally-supported Bonnor-Ebert spheres, most of our cores have stable configurations accessible to them. We estimate the external pressures on our cores using archival $^{13}$CO velocity dispersion measurements and find that our cores are typically pressure-confined, rather than gravitationally bound. We perform a virial analysis on our cores, and find that they typically cannot be supported against collapse by internal thermal energy alone, due primarily to the measured external pressures. This suggests that the dominant mode of internal support in starless cores in the Cepheus Flare is either non-thermal motions or internal magnetic fields.
We present 850 and 450 micron observations of the dense regions within the Auriga-California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstel lar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHalpha 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 micron emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga-Cal. We find that the disparity between the richness of infrared star forming objects in Orion A and the sparsity in Auriga-Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga-Cal will maintain a lower star formation efficiency.
CO, $^{13}$CO and C$^{18}$O ${it J}$ = 3--2 observations are presented of the Ophiuchus molecular cloud. The $^{13}$CO and C$^{18}$O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F and J regions. The optically thin(ner) C$^{18}$ O line is used as a column density tracer, from which the gravitational binding energy is estimated to be $4.5 times 10^{39}$ J (2282 $M_odot$ km$^2$ s$^{-2}$). The turbulent kinetic energy is $6.3 times 10^{38}$ J (320 $M_odot$ km$^2$ s$^{-2}$), or 7 times less than this, and therefore the Oph cloud as a whole is gravitationally bound. Thirty protostars were searched for high velocity gas, with eight showing outflows, and twenty more having evidence of high velocity gas along their lines-of-sight. The total outflow kinetic energy is $1.3 times 10^{38}$ J (67 $M_odot$ km$^2$ s$^{-2}$), corresponding to 21$%$ of the clouds turbulent kinetic energy. Although turbulent injection by outflows is significant, but does ${it not}$ appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii $sim$ 0.01--0.05 pc, virial masses $sim$ 0.1--12 $M_odot$, luminosities $sim$ 0.001--0.1 K~km s$^{-1}$ pc$^{-2}$, and excitation temperatures $sim$ 10--50K. These are consistent with the standard GMC based size-line width relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to sub solar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.
54 - S. Coude , P. Bastien , H. Kirk 2016
Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the SCUBA-2 shared-risk observations at 450 $mu$m and 850 $ mu$m of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the HARP $^{12}$CO J=3-2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index $alpha$ map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high $^{12}$CO J=3-2 line contamination, to 27 previously identified clumps in OMC-4. This allows us to quantify the effect of line contamination on the ratio of 850 $mu$m to 450 $mu$m flux densities and how it modifies the deduced spectral index of emissivity $beta$ for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC-5 has a $^{12}$CO J=3-2 contamination level of 16 %. Furthermore, we find the strongest contamination level (44 %) towards a young star with disk near OMC-2. This work is part of the JCMT Gould Belt Legacy Survey.
We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the surveys aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous integral filament in the densest regions of that filament. Furthermore, we see an hour-glass magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density north-eastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا