ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral shape deformation in inverse spin Hall voltage in Y3Fe5O12|Pt bilayers at high microwave power levels

389   0   0.0 ( 0 )
 نشر من قبل Jana Lustikova
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE011 cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spin Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.



قيم البحث

اقرأ أيضاً

The dependence of the spin-pumping effect on the yttrium iron garnet (Y3Fe5O12, YIG) thickness detected by the inverse spin Hall effect (ISHE) has been investigated quantitatively. Due to the spin-pumping effect driven by the magnetization precession in the ferrimagnetic insulator YIG film a spin-polarized electron current is injected into the Pt layer. This spin current is transformed into electrical charge current by means of the ISHE. An increase of the ISHE-voltage with increasing film thickness is observed and compared to the theoretically expected behavior. The effective damping parameter of the YIG/Pt samples is found to be enhanced with decreasing YIG film thickness. The investigated samples exhibit a spin mixing conductance of g=(7.43 pm 0.36) times 10^{18} m^{-2} and a spin Hall angle of theta_{ISHE} = 0.009 pm 0.0008. Furthermore, the influence of nonlinear effects on the generated voltage and on the Gilbert damping parameter at high excitation powers are revealed. It is shown that for small YIG film thicknesses a broadening of the linewidth due to nonlinear effects at high excitation powers is suppressed because of a lack of nonlinear multi-magnon scattering channels. We have found that the variation of the spin-pumping efficiency for thick YIG samples exhibiting pronounced nonlinear effects is much smaller than the nonlinear enhancement of the damping.
We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers w ith thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer its origin is associated with a particular property of Co.
Pure spin current based research is mostly focused on ferromagnet (FM)/heavy metal (HM) system. Because of the high spin orbit coupling (SOC) these HMs exhibit short spin diffusion length and therefore possess challenges for device application. Low S OC (elements of light weight) and large spin diffusion length make the organic semiconductors (OSCs) suitable for future spintronic applications. From theoretical model it is explained that, due to $pi$ - $sigma$ hybridization the curvature of the C$_{60}$ molecules may increase the SOC strength. Here, we have investigated spin pumping and inverse spin hall effect (ISHE) in CoFeB/C$_{60}$ bilayer system using coplanar wave guide based ferromagnetic resonance (CPW-FMR) set-up. We have performed angle dependent ISHE measurement to disentangle the spin rectification effects for example anisotropic magnetoresistance, anomalous Hall effect etc. Further, effective spin mixing conductance (g$_{eff}^{uparrowdownarrow}$) and spin Hall angle ($theta_{SH}$) for C$_{60}$ have been reported here. The evaluated value for $theta_{SH}$ is 0.055.
140 - Ayaka Tsukahara 2013
Inverse spin Hall effect (ISHE) allows the conversion of pure spin current into charge current in nonmagnetic materials (NM) due to spin-orbit interaction (SOI). In ferromagnetic materials (FM), SOI is known to contribute to anomalous Hall effect (AH E), anisotropic magnetoresistance (AMR), and other spin-dependent transport phenomena. However, SOI in FM has been ignored in ISHE studies in spintronic devices, and the possibility of self-induced ISHE in FM has never been explored until now. In this paper, we demonstrate the experimental verification of ISHE in FM. We found that the spin-pumping-induced spin current in permalloy (Py) film generates a transverse electromotive force (EMF) in the film itself, which results from the coupling of spin current and SOI in Py. The control experiments ruled out spin rectification effect and anomalous Nernst effect as the origin of the EMF.
100 - Yumeng Yang , Yanjun Xu , Kui Yao 2016
We investigated spin Hall magnetoresistance in FeMn/Pt bilayers, which was found to be one order of magnitude larger than that of heavy metal and insulating ferromagnet or antiferromagnet bilayer systems, and comparable to that of NiFe/Pt bilayers. T he spin Hall magnetoresistance shows a non-monotonic dependence on the thicknesses of both FeMn and Pt. The former can be accounted for by the thickness dependence of net magnetization in FeMn thin films, whereas the latter is mainly due to spin accumulation and diffusion in Pt. Through analysis of the Pt thickness dependence, the spin Hall angle, spin diffusion length of Pt and the real part of spin mixing conductance were determined to be 0.2, 1.1 nm, and $5.5 * 10^{14} {Omega}^{-1} m^{-2}$, respectively. The results corroborate the spin orbit torque effect observed in this system recently.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا