ﻻ يوجد ملخص باللغة العربية
We study cut elimination for a multifocused variant of full linear logic in the sequent calculus. The multifocused normal form of proofs yields problems that do not appear in a standard focused system, related to the constraints in grouping rule instances in focusing phases. We show that cut elimination can be performed in a sensible way even though the proof requires some specific lemmas to deal with multifocusing phases, and discuss the difficulties arising with cut elimination when considering normal forms of proofs in linear logic.
Linear Logic was introduced by Girard as a resource-sensitive refinement of classical logic. It turned out that full propositional Linear Logic is undecidable (Lincoln, Mitchell, Scedrov, and Shankar) and, hence, it is more expressive than (modalized
First-order logic is typically presented as the study of deduction in a setting with elementary quantification. In this paper, we take another vantage point and conceptualize first-order logic as a linear space that encodes plausibility. Whereas a de
The elimination distance to some target graph property P is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the pro
Process calculi based on logic, such as $pi$DILL and CP, provide a foundation for deadlock-free concurrent programming. However, in previous work, there is a mismatch between the rules for constructing proofs and the term constructors of the $pi$-cal
The problem we want to solve is how to generate all theorems of a given size in the implicational fragment of propositional intuitionistic linear logic. We start by filtering for linearity the proof terms associated by our Prolog-based theorem prover