ترغب بنشر مسار تعليمي؟ اضغط هنا

A First Comparison of the responses of a He4-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

124   0   0.0 ( 0 )
 نشر من قبل Kevin Fissum
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A first comparison has been made between the pulse-shape discrimination characteristics of a novel $^{4}$He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the $^{4}$He gas volume, the $^{4}$He-based detector registered a maximum scintillation-light yield of 750~keV$_{ee}$ to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750~keV$_{ee}$ was excellent in the case of the $^{4}$He-based detector. Above 750~keV$_{ee}$ its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.



قيم البحث

اقرأ أيضاً

A liquid scintillator (LS) is developed for the Taishan Antineutrino Observatory (TAO), a ton-level neutrino detector to measure the reactor antineutrino spectrum with sub-percent energy resolution by adopting Silicon Photomultipliers (SiPMs) as phot osensor. To reduce the dark noise of SiPMs to an acceptable level, the LS has to work at -50 degree or lower. A customized apparatus based on a charge-coupled device (CCD) is developed to study the transparency of the liquid samples in a cryostat. We find that the water content in LS results in transparency degradation at low temperature, which can be cured by bubbling dry nitrogen to remove water. Adding 0.05% ethanol as co-solvent cures the solubility decrease problem of the fluors PPO and bis-MSB at low temperature. Finally, a Gadoliniumdoped liquid scintillator (GdLS), with 0.1% Gd by weight, 2 g/L PPO, 1 mg/L bis-MSB, and 0.05% ethanol by weight in the solvent LAB, shows good transparency at -50 degree and also good light yield.
The detectors based on the liquid scintillator (LS) monitored by an array of photo-multiplier tubes (PMT) are often used in low energy experiments such as neutrino oscillation studies and search for dark matter. Detectors of this kind operate in an e nergy range spanning from hundreds of keV to a few GeV providing a few percent resolution at energies above 1 MeV and allowing to observe fine spectral features. This article gives a brief overview of relevant physical processes and introduces a new universal simulation tool LSMC (Liquid Scintillator Monte Carlo) for simulation of LS-based detectors equipped with PMT arrays. This tool is based on the Geant4 framework and provides supplementing functionality for ease of configuration and comprehensive output. The usage of LSMC is illustrated by modeling and optimization of a compact detector prototype currently being built at Baksan Neutrino Observatory.
To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studie d by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB.
84 - Y. Abreu , Y. Amhis , L. Arnold 2017
The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. Th e detector target uses cubes of polyvinyltoluene interleaved with $^6$LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisation of scintillation signals, making efficient use of the detector volume. Monte Carlo simulations indicate that a neutron capture efficiency of over 70% is achievable with a sufficient number of $^6$LiF:ZnS(Ag) screens per cube and that an appropriate segmentation enables a measurement of the positron energy which is not limited by gamma-ray leakage. First measurements of a single cell indicate that a very good neutron-gamma discrimination and high neutron detection efficiency can be obtained with adequate triggering techniques. The light yield from positron signals has been measured, showing that an energy resolution of 14%/$sqrt{E({mathrm{MeV}})}$ is achievable with high uniformity. A preliminary neutrino signal analysis has been developed, using selection criteria for pulse shape, energy, time structure and energy spatial distribution and showing that an antineutrino efficiency of 40% can be achieved. It also shows that the fine segmentation of the detector can be used to significantly decrease both correlated and accidental backgrounds.
123 - Xi Yuan , Xing Zhang , Xufei Xie 2013
A neutron detector based on EJ301 liquid scintillator has been employed at EAST to measure the neutron energy spectrum for D-D fusion plasma. The detector was carefully characterized in different quasi-monoenergetic neutron fields generated by a 4.5 MV Van de Graaff accelerator. In recent experimental campaigns, due to the low neutron yield at EAST, a new shielding device was designed and located as close as possible to the tokamak to enhance the count rate of the spectrometer. The fluence of neutrons and gamma-rays was measured with the liquid neutron spectrometer and was consistent with 3He proportional counter and NaI (Tl) gamma-ray spectrometer measurements. Plasma ion temperature values were deduced from the neutron spectrum in discharges with lower hybrid wave injection and ion cyclotron resonance heating. Scattered neutron spectra were simulated by the Monte Carlo transport Code, and they were well verified by the pulse height measurements at low energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا