ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherently tracking the covariance matrix of an open quantum system

152   0   0.0 ( 0 )
 نشر من قبل Michael Hush
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherent feedback control of quantum systems has demonstrable advantages over measurement-based control, but so far there has been little work done on coherent estimators and more specifically coherent observers. Coherent observers are input the coherent output of a specified quantum plant, and are designed such that some subset of the observer and plants expectation values converge in the asymptotic limit. We previously developed a class of mean tracking (MT) observers for open harmonic oscillators that only converged in mean position and momentum; Here we develop a class of covariance matrix tracking (CMT) coherent observers that track both the mean and covariance matrix of a quantum plant. We derive necessary and sufficient conditions for the existence of a CMT observer, and find there are more restrictions on a CMT observer than there are on a MT observer. We give examples where we demonstrate how to design a CMT observer and show it can be used to track properties like the entanglement of a plant. As the CMT observer provides more quantum information than a MT observer, we expect it will have greater application in future coherent feedback schemes mediated by coherent observers. Investigation of coherent quantum estimators and observers is important in the ongoing discussion of quantum measurement; As they provide estimation of a systems quantum state without explicit use of the measurement postulate in their derivation.



قيم البحث

اقرأ أيضاً

175 - Jun Li , Dawei Lu , Zhihuang Luo 2014
Precisely characterizing and controlling realistic open quantum systems is one of the most challenging and exciting frontiers in quantum sciences and technologies. In this Letter, we present methods of approximately computing reachable sets for coher ently controlled dissipative systems, which is very useful for assessing control performances. We apply this to a two-qubit nuclear magnetic resonance spin system and implement some tasks of quantum control in open systems at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudo-pure states. Our work shows interesting and promising applications of environment-assisted quantum dynamics.
We find the time evolution of the system of two non-interacting unstable particles, distinguishable as well as identical ones, in arbitrary reference frame having only the Kraus operators governing the evolution of its components in the rest frame. W e than calculate in the rigorous way Einstein-Podolsky-Rosen quantum correlation functions for K0-K0 system in the singlet state taking into account CP-violation and decoherence and show that the results are exactly the same despite the fact we treat kaons as distinguishable or identical particles which means that the statistics of the particles plays no role, at least in considered cases.
Elucidating the energy transfer between a quantum system and a reservoir is a central issue in quantum non-equilibrium thermodynamics, which could provide novel tools to engineer quantum-enhanced heat engines. The lack of information on the reservoir inherently limits the practical insight that can be gained on the exchange process of open quantum systems. Here, we investigate the energy transfer for an open quantum system in the framework of quantum fluctuation relations. As a novel toolbox, we employ a nitrogen-vacancy center spin qubit in diamond, subject to repeated quantum projective measurements and a tunable dissipation channel. In the presence of energy fluctuations originated by dissipation and quantum projective measurements, the experimental results, supplemented by numerical simulations, show the validity of the energy exchange fluctuation relation, where the energy scale factor encodes missing reservoir information in the system out-of-equilibrium steady state properties. This result is complemented by a theoretical argument showing that, also for an open three-level quantum system, the existence of an out-of-equilibrium steady state dictates a unique time-independent value of the energy scale factor for which the fluctuation relation is verified. Our findings pave the way to the investigation of energy exchange mechanisms in arbitrary open quantum systems.
Quantum effects such as the environment assisted quantum transport (ENAQT) displayed in photosynthetic Fenna-Mathews-Olson (FMO) complex has been simulated on analog quantum simulators. Digital quantum simulations offer greater universality and flexi bility over analog simulations. However, digital quantum simulations of open quantum systems face a theoretical challenge; one does not know the solutions of the continuous time master equation for developing quantum gate operators. We give a theoretical framework for digital quantum simulation of ENAQT by introducing new quantum evolution operators. We develop the dynamical equation for the operators and prove that it is an analytical solution of the master equation. As an example, using the dynamical equations, we simulate the FMO complex in the digital setting, reproducing theoretical and experimental evidence of the dynamics. The framework gives an optimal method for {quantum circuit} implementation, giving a log reduction in complexity over known methods. The generic framework can be extrapolated to study other open quantum systems.
Landauers principle provides a perspective on the physical meaning of information as well as on the minimum working cost of information processing. Whereas most studies have related the decrease in entropy during a computationally irreversible proces s to a lower bound of dissipated heat, recent efforts have also provided another lower bound associated with the thermodynamic fluctuation of heat. The coexistence of the two conceptually independent bounds has stimulated comparative studies of their close relationship or tightness; however, these studies were concerned with finite quantum systems that allowed the revival of erased information because of a finite recurrence time. We broaden these comparative studies further to open quantum systems with infinite recurrence times. By examining their dependence on the initial state, we find the independence of the thermodynamic bound from the initial coherence, whereas the entropic bound depends on both the initial coherence and population. A crucial role is indicated by the purity of the initial state: the entropic bound is tighter when the initial condition is sufficiently mixed, whereas the thermodynamic bound is tighter when the initial state is close to a pure state. These trends are consistent with previous results obtained for finite systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا