ترغب بنشر مسار تعليمي؟ اضغط هنا

Contextuality, Cohomology and Paradox

94   0   0.0 ( 0 )
 نشر من قبل Samson Abramsky
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

Contextuality is a key feature of quantum mechanics that provides an important non-classical resource for quantum information and computation. Abramsky and Brandenburger used sheaf theory to give a general treatment of contextuality in quantum theory [New Journal of Physics 13 (2011) 113036]. However, contextual phenomena are found in other fields as well, for example database theory. In this paper, we shall develop this unified view of contextuality. We provide two main contributions: firstly, we expose a remarkable connection between contexuality and logical paradoxes; secondly, we show that an important class of contextuality arguments has a topological origin. More specifically, we show that All-vs-Nothing proofs of contextuality are witnessed by cohomological obstructions.



قيم البحث

اقرأ أيضاً

This chapter contains an exposition of the sheaf-theoretic framework for contextuality emphasising resource-theoretic aspects, as well as some original results on this topic. In particular, we consider functions that transform empirical models on a s cenario S to empirical models on another scenario T, and characterise those that are induced by classical procedures between S and T corresponding to free operations in the (non-adaptive) resource theory of contextuality. We proceed by expressing such functions as empirical models themselves, on a new scenario built from S and T. Our characterisation then boils down to the non-contextuality of these models. We also show that this construction on scenarios provides a closed structure in the category of measurement scenarios.
In quantum physics the term `contextual can be used in more than one way. One usage, here called `Bell contextual since the idea goes back to Bell, is that if $A$, $B$ and $C$ are three quantum observables, with $A$ compatible (i.e., commuting) with $B$ and also with $C$, whereas $B$ and $C$ are incompatible, a measurement of $A$ might yield a different result (indicating that quantum mechanics is contextual) depending upon whether $A$ is measured along with $B$ (the ${A,B}$ context) or with $C$ (the ${A,C}$ context). An analysis of what projective quantum measurements measure shows that quantum theory is Bell noncontextual: the outcome of a particular $A$ measurement when $A$ is measured along with $B$ would have been exactly the same if $A$ had, instead, been measured along with $C$. A different definition, here called `globally (non)contextual refers to whether or not there is (noncontextual) or is not (contextual) a single joint probability distribution that simultaneously assigns probabilities in a consistent manner to the outcomes of measurements of a certain collection of observables, not all of which are compatible. A simple example shows that such a joint probability distribution can exist even in a situation where the measurement probabilities cannot refer to properties of a quantum system, and hence lack physical significance, even though mathematically well-defined. It is noted that the quantum sample space, a projective decomposition of the identity, required for interpreting measurements of incompatible properties in different runs of an experiment using different types of apparatus has a tensor product structure, a fact sometimes overlooked.
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible mea surements are jointly performed. Here, compatible measurements are those that can be performed simultaneously or in any order without disturbance. This conflict is generically called quantum contextuality. In this article, we present an introduction to this subject and its current status. We review several proofs of the Kochen-Specker theorem and different notions of contextuality. We explain how to experimentally test some of these notions and discuss connections between contextuality and nonlocality or graph theory. Finally, we review some applications of contextuality in quantum information processing.
Contextuality is a non-classical behaviour that can be exhibited by quantum systems. It is increasingly studied for its relationship to quantum-over-classical advantages in informatic tasks. To date, it has largely been studied in discrete variable s cenarios, where observables take values in discrete and usually finite sets. Practically, on the other hand, continuous-variable scenarios offer some of the most promising candidates for implementing quantum computations and informatic protocols. Here we set out a framework for treating contextuality in continuous-variable scenarios. It is shown that the Fine--Abramsky--Brandenburger theorem extends to this setting, an important consequence of which is that nonlocality can be viewed as a special case of contextuality, as in the discrete case. The contextual fraction, a quantifiable measure of contextuality that bears a precise relationship to Bell inequality violations and quantum advantages, can also be defined in this setting. It is shown to be a non-increasing monotone with respect to classical operations that include binning to discretise data. Finally, we consider how the contextual fraction can be formulated as an infinite linear program, and calculated with increasing accuracy using semi-definite programming approximations.
88 - A. Tartaglia 1998
The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them instruction kits telling them what to do when meeting a measurement apparatus any paradox disappears. In this view the quantum state is characterized by the prescribed behaviour rather than by the specific value a parameter assumes as a result of an interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا