ﻻ يوجد ملخص باللغة العربية
Using geometric inversion with respect to the origin we extend the definition of box dimension to the case of unbounded subsets of Euclidean spaces. Alternative but equivalent definition is provided using stereographic projection on the Riemann sphere. We study its basic properties, and apply it to the study of the Hopf-Takens bifurcation at infinity.
We consider the dynamics of a two-dimensional ordinary differential equation exhibiting a Hopf bifurcation subject to additive white noise and identify three dynamical phases: (I) a random attractor with uniform synchronisation of trajectories, (II)
In this paper, we show the existence of Hopf bifurcation of a delayed single population model with patch structure. The effect of the dispersal rate on the Hopf bifurcation is considered. Especially, if each patch is favorable for the species, we sho
In this paper we study the stabilization of rotating waves using time delayed feedback control. It is our aim to put some recent results in a broader context by discussing two different methods to determine the stability of the target periodic orbit
In this paper, we consider a general reaction-diffusion system with nonlocal effects and Neumann boundary conditions, where a spatial average kernel is chosen to be the nonlocal kernel. By virtue of the center manifold reduction technique and normal
Time-delay chaotic systems refer to the hyperchaotic systems with multiple positive Lyapunov exponents. It is characterized by more complex dynamics and a wider range of applications as compared to those non-time-delay chaotic systems. In a three-dim