ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct photon production at RHIC and LHC energies

227   0   0.0 ( 0 )
 نشر من قبل Olena Linnyk
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct photon spectra and elliptic flow v2 in heavy-ion collisions at RHIC and LHC energies are investigated within a relativistic transport approach incorporating both hadronic and partonic phases - the Parton-Hadron-String Dynamics (PHSD). The results suggest that a large v2 of the direct photons - as observed by the PHENIX Collaboration - signals a significant contribution of photons produced in interactions of secondary mesons and baryons in the late stages of the collision. In order to further differentiate the origin of the direct photon azimuthal asymmetry, we compare our predictions for the centrality dependence of the direct photon yield to the recent measurements by the PHENIX Collaboration and provide predictions for Pb+Pb collisions at LHC energies with respect to the direct photon spectra and v2(pT) for 0-40% centrality.



قيم البحث

اقرأ أيضاً

The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes b oth elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. The dependence of the jet quenching parameter $hat{q}$ on medium temperature and jet flavor is quantitatively extracted.
We perform a systematic study on the decorrelation of anisotropic flows along the pseudorapidity in relativistic heavy-ion collisions at the LHC and RHIC energies. The dynamical evolution of the QGP fireball is simulated via the CLVisc (ideal) (3+1)- dimensional hydrodynamics model, with the fully fluctuating initial condition from A-Multi-Phase-Transport (AMPT) model. Detailed analysis is performed on the longitudinal decorrelations of elliptic, triangular and quadrangular flows in terms of flow vectors, flow magnitudes and flow orientations (event planes). It is found that pure flow magnitudes have smaller longitudinal decorrelation than pure flow orientations, and the decorrelation of flow vectors is a combined effect of both flow magnitudes and orientations. The longitudinal decorrelation of elliptic flow has a strong and non-monotonic centrality dependence due to the initial elliptic collision geometry: smallest decorrelation in mid-central collisions. In contrast, the decorrelations of triangular and quadrangular flows have weak centrality dependence, slightly larger decorrelations in more peripheral collisions. Our numerical results for Pb+Pb collisions at the LHC are in good agreement with the ATLAS data, while our RHIC results predict much larger longitudinal decorrelations as compared to the LHC. We further analyze the longitudinal structures of the AMPT initial conditions and find that the final-state longitudinal decorrelation effects are strongly correlated with the lengths of the initial string structures in the AMPT model. The decorrelation effects are typically larger at lower collision energies and in more peripheral collisions due to shorter lengths of the string structures in the initial states.
Within five different approaches to parton propagation and energy loss in dense matter, a phenomenological study of experimental data on suppression of large $p_T$ single inclusive hadrons in heavy-ion collisions at both RHIC and LHC was carried out. The evolution of bulk medium used in the study for parton propagation was given by 2+1D or 3+1D hydrodynamic models which are also constrained by experimental data on bulk hadron spectra. Values for the jet transport parameter $hat q$ at the center of the most central heavy-ion collisions are extracted or calculated within each model, with parameters for the medium properties that are constrained by experimental data on the hadron suppression factor $R_{AA}$. For a quark with initial energy of 10 GeV we find that $hat qapprox 1.2 pm 0.3$ GeV$^2$/fm at an initial time $tau_0=0.6$ fm/$c$ in Au+Au collisions at $sqrt{s}=200$ GeV/n and $hat qapprox 1.9 pm 0.7 $ GeV$^2$/fm in Pb+Pb collisions at $sqrt{s}=2.76 $ TeV/n. Compared to earlier studies, these represent significant convergence on values of the extracted jet transport parameter, reflecting recent advances in theory and the availability of new experiment data from the LHC.
225 - Chun Shen , Bjorn Schenke 2017
We present a fully three-dimensional initial state model for relativistic heavy-ion collisions at RHIC Beam Energy Scan (BES) collision energies. The initial energy and net baryon density profiles are produced based on a classical string deceleration model. The baryon stopping and fluctuations during this early stage of the collision are investigated by studying the net baryon rapidity distribution and longitudinal decorrelation of the transverse geometry.
208 - Janus Weil , Ulrich Mosel 2012
We present dilepton spectra from nucleus-nucleus collisions at SIS energies, which were simulated with the GiBUU transport model in a resonance-model approach. These spectra are compared to the data published by the HADES collaboration. We argue that the interpretation of dilepton spectra at SIS energies critically depends on the couplings between the {rho} meson and the baryonic resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا