ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles

146   0   0.0 ( 0 )
 نشر من قبل Istvan Nandori
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of magnetization and the specific loss power in magnetic nanoparticles with uniaxial anisotropy driven by a rotating magnetic field. We propose a new type of applied field, which is simultaneously rotating and alternating, i.e. the direction of the rotating external field changes periodically. We show that a more efficient heat generation by magnetic nanoparticles is possible with this new type of applied field and we suggest its possible experimental realization in cancer therapy which requires the enhancement of loss energies.



قيم البحث

اقرأ أيضاً

In this work we present a new method to calculate the classical properties of magnetic nanoparticles. Based on the Bethe-Peierls (pair) approximation, we developed a simple system of equations for the classical magnetization of spins at any position within the nanoparticle. The nearest neightbor pair correlations are treated exactly for Ising spins, and the method can be generalized for various lattice symmetries. The master equation is solved for the Glauber dynamics (single-spin-flip) in order to obtain the time evolution of the magnetization. The capabilities of the model are demonstrated through the calculation of hysteresis loops as well as field cooling (FC) and zero field cooling (ZFC) magnetization curves of heterogeneous nanoparticles. The present method can be an alternative to the usually complex and time consuming methods employed in micromagnetism.
We analyze the heat current flowing across interacting quantum dots within the Coulomb blockade regime. Power can be generated by either voltage or temperature biases. In the former case, we find nonlinear contributions to the Peltier effect that are dominated by conventional Joule heating for sufficiently high voltages. In the latter case, the differential thermal conductance shows maxima or minima depending on the energy level position. Furthermore, we discuss departures from the Kelvin-Onsager reciprocity relation beyond linear response.
The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.
In the context of magnetic hyperthermia, several physical parameters are used to optimize the heat generation and these include the nanoparticles concentration and the magnitude and frequency of the external AC magnetic field. Here we extend our prev ious work by computing nonlinear contributions to the specific absorption rate, while taking into account (weak) inter-particle dipolar interactions and DC magnetic field. In the previous work, the latter were shown to enhance the SAR in some specific geometries and setup. We find that the cubic correction to the AC susceptibility does not modify the qualitative behavior observed earlier but does bring a non negligible quantitative change of specific absorption rate, especially at relatively high AC field intensities. Incidentally, within our approach based on the AC susceptibility, we revisit the physiological empirical criterion on the upper limit of the product of the AC magnetic field intensity $H_{0}$ and its frequency $f$, and provide a physicists rationale for it.
We investigate the nonlinear regime of charge and energy transport through Coulomb-blockaded quantum dots. We discuss crossed effects that arise when electrons move in response to thermal gradients (Seebeck effect) or energy flows in reaction to volt age differences (Peltier effect). We find that the differential thermoelectric conductance shows a characteristic Coulomb butterfly structure due to charging effects. Importantly, we show that experimentally observed thermovoltage zeros are caused by the activation of Coulomb resonances at large thermal shifts. Furthermore, the power dissipation asymmetry between the two attached electrodes can be manipulated with the applied voltage, which has implications for the efficient design of nanoscale coolers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا