ترغب بنشر مسار تعليمي؟ اضغط هنا

BICEP2/Keck Array IV: Optical Characterization and Performance of the BICEP2 and Keck Array Experiments

114   0   0.0 ( 0 )
 نشر من قبل Abigail Vieregg
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

BICEP2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. BICEP2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). BICEP2 and the Keck Array share a common optical design and employ the field-proven BICEP1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of BICEP2 and the Keck Array at 150 GHz.



قيم البحث

اقرأ أيضاً

A linear polarization field on the sphere can be uniquely decomposed into an E-mode and a B-mode component. These two components are analytically defined in terms of spin-2 spherical harmonics. Maps that contain filtered modes on a partial sky can al so be decomposed into E-mode and B-mode components. However, the lack of full sky information prevents orthogonally separating these components using spherical harmonics. In this paper, we present a technique for decomposing an incomplete map into E and B-mode components using E and B eigenmodes of the pixel covariance in the observed map. This method is found to orthogonally define E and B in the presence of both partial sky coverage and spatial filtering. This method has been applied to the BICEP2 and the Keck Array maps and results in reducing E to B leakage from LCDM E-modes to a level corresponding to a tensor-to-scalar ratio of $r<1times10^{-4}$.
Precision measurements of cosmic microwave background (CMB) polarization require extreme control of instrumental systematics. In a companion paper we have presented cosmological constraints from observations with the BICEP2 and Keck Array experiments up to and including the 2015 observing season (BK15), resulting in the deepest CMB polarization maps to date and a statistical sensitivity to the tensor-to-scalar ratio of $sigma(r) = 0.020$. In this work we characterize the beams and constrain potential systematic contamination from main beam shape mismatch at the three BK15 frequencies (95, 150, and 220 GHz). Far-field maps of 7,360 distinct beam patterns taken from 2010-2015 are used to measure differential beam parameters and predict the contribution of temperature-to-polarization leakage to the BK15 B-mode maps. In the multifrequency, multicomponent likelihood analysis that uses BK15, Planck, and WMAP maps to separate sky components, we find that adding this predicted leakage to simulations induces a bias of $Delta r = 0.0027 pm 0.0019$. Future results using higher-quality beam maps and improved techniques to detect such leakage in CMB data will substantially reduce this uncertainty, enabling the levels of systematics control needed for BICEP Array and other experiments that plan to definitively probe large-field inflation.
We have developed antenna-coupled transition-edge sensor (TES) bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including BICEP2, Keck Array, and the balloon borne SPIDER. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%-30% bandwidth at 95, 150, or 220~GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typically ~0.5%, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET~300 uKrts. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of ~9 uKrts, as measured directly from CMB maps in the 2013 season. Similar arrays have recently flown in the SPIDER instrument, and development of this technology is ongoing.
We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg$^2$ patch of sky centered on RA 0h, Dec. $-57.5deg$. The combined maps reach a depth of 57 nK deg in Stokes $Q$ and $U$ in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 $mu$K deg in $Q$ and $U$ at 143 GHz). We detect 150$times$353 cross-correlation in $B$-modes at high significance. We fit the single- and cross-frequency power spectra at frequencies $geq 150$ GHz to a lensed-$Lambda$CDM model that includes dust and a possible contribution from inflationary gravitational waves (as parameterized by the tensor-to-scalar ratio $r$), using a prior on the frequency spectral behavior of polarized dust emission from previous planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the $r$ constraint. Finally we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for $r$, and yields an upper limit $r_{0.05}<0.12$ at 95% confidence. Marginalizing over dust and $r$, lensing $B$-modes are detected at $7.0,sigma$ significance.
We present results from an analysis of all data taken by the BICEP2/Keck CMB polarization experiments up to and including the 2015 observing season. This includes the first Keck Array observations at 220 GHz and additional observations at 95 & 150 GH z. The $Q/U$ maps reach depths of 5.2, 2.9 and 26 $mu$K$_{cmb}$ arcmin at 95, 150 and 220 GHz respectively over an effective area of $approx 400$ square degrees. The 220 GHz maps achieve a signal-to-noise on polarized dust emission approximately equal to that of Planck at 353 GHz. We take auto- and cross-spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz. We evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-$Lambda$CDM+$r$+dust+synchrotron+noise. The foreground model has seven parameters, and we impose priors on some of these using external information from Planck and WMAP derived from larger regions of sky. The model is shown to be an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint $r_{0.05}<0.07$ at 95% confidence, which tightens to $r_{0.05}<0.06$ in conjunction with Planck temperature measurements and other data. The lensing signal is detected at $8.8 sigma$ significance. Running maximum likelihood search on simulations we obtain unbiased results and find that $sigma(r)=0.020$. These are the strongest constraints to date on primordial gravitational waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا