ﻻ يوجد ملخص باللغة العربية
In this letter we present a coherent picture for the evolution of Higgs mode in both neutral and charged $s$-wave fermion superfluids, as the strength of attractive interaction between fermions increases from the BCS to the BEC regime. In the case of neutral fermionic superfluid, such as ultracold fermions, the Higgs mode is pushed to higher energy while at the same time, gradually loses its spectral weight as interaction strength increases toward the BEC regime, because the system is further tuned away from Lorentz invariance. On the other hand, when damping is taken into account, Higgs mode is significantly broadened due to coupling to phase mode in the whole BEC-BCS crossover. In the charged case of electron superconductor, the Anderson-Higgs mechanism gaps out the phase mode and suppresses the coupling between the Higgs and the phase modes, and consequently, stabilizes the Higgs mode.
Higgs and Goldstone modes are possible collective modes of an order parameter upon spontaneously breaking a continuous symmetry. Whereas the low-energy Goldstone (phase) mode is always stable, additional symmetries are required to prevent the Higgs (
We study the Higgs amplitude mode in the s-wave superfluid state on the honeycomb lattice inspired by recent cold atom experiments. We consider the attractive Hubbard model and focus on the vicinity of a quantum phase transition between semi-metal an
We demonstrate that an undamped few-body precursor of the Higgs mode can be investigated in a harmonically trapped Fermi gas. Using exact diagonalisation, the lowest monopole mode frequency is shown to depend non-monotonically on the interaction stre
We study the population dynamics of a Bose-Einstein condensate in a double-well potential throughout the crossover from Josephson dynamics to hydrodynamics. At barriers higher than the chemical potential, we observe slow oscillations well described b
We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC re