ﻻ يوجد ملخص باللغة العربية
Radiation damage effects represent one of the limits for technologies to be used in harsh radiation environments as space, radiotherapy treatment, high-energy phisics colliders. Different technologies have known tolerances to different radiation fields and should be taken into account to avoid unexpected failures which may lead to unrecoverable damages to scientific missions or patient health.
The motivation for investigating the use of GaAs as a material for detecting particles in experiments for High Energy Physics (HEP) arose from its perceived resistance to radiation damage. This is a vital requirement for detector materials that are t
Semi-insulating, undoped, Liquid Encapsulated Czochralski (SI-U LEC) GaAs detectors have been irradiated with 1MeV neutrons, 24GeV/c protons, and 300MeV/c pions. The maximum fluences used were 6, 3, and 1.8~10$^{14}$ particles/cm$^{2}$ respectively.
Aging phenomena constitute one of the most complex and serious potential problems which could limit, or severely impair, the use of gaseous detectors in unprecedented harsh radiation environments. Long-term operation in high-intensity experiments of
In this work we propose the application of a radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of radiation detectors at very high fluences (e.g. 1{div}2 10^16 1-
Cs$_2$LiYCl$_6$:Ce$^{3+}$ (CLYC) is a new scintillator that is an attractive option for applications requiring the ability to detect both gamma rays and neutrons within a single volume. It is therefore of interest in applications that require low siz