ﻻ يوجد ملخص باللغة العربية
We report the direct observation of two mid-gap core d-states of differing symmetry for a single Fe atom embedded in GaAs. These states are distinguished by the strength of their hybridization with the surrounding host electronic structure. The mid-gap state of Fe that does not hybridize via sigma-bonding is strongly localized to the Fe atom, whereas the other, which does, is extended and comparable in size to other acceptor states. Tight-binding calculations of these mid-gap states agree with the spatial structure of the measured wave functions, and illustrate that such measurements can determine the degree of hybridization via pi-bonding of impurity d-states. These single-dopant mid-gap states with strong d-character, which are intrinsically spin-orbit-entangled, provide an opportunity for probing and manipulating local magnetism and may be of use for high-speed electrical control of single spins.
The charge dynamics of hydrogen-like centers formed by the implantation of energetic (4 MeV) muons in semi-insulating GaAs have been studied by muon spin resonance in electric fields. The results point to the significant role of deep hole traps in th
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calc
Using low-temperature scanning tunneling microscopy (STM), we studied the vortex states of single-layer FeSe film on SrTiO3 (100) substrate, and the local behaviors of superconductivity at sample boundaries. We clearly observed multiple discrete Caro
In hybrid lead halide perovskites, the coupling between photogenerated charges and the ionic degrees of freedom plays a crucial role in defining the intrinsic limit of carrier mobility and lifetime. However, direct investigation of this fundamental i
Direct evidence of quantum coherence in a single-molecule magnet in frozen solution is reported with coherence times as long as T2 = 630 ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are