ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing the Metal-Poor M31 Stellar Halo with Blue Horizontal Branch Stars

217   0   0.0 ( 0 )
 نشر من قبل Benjamin F. Williams
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31s inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the met al-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.



قيم البحث

اقرأ أيضاً

The distribution of Milky Way halo blue horizontal-branch (BHB) stars is examined using action-based extended distribution functions (EDFs) that describe the locations of stars in phase space, metallicity, and age. The parameters of the EDFs are fitt ed using stars observed in the Sloan Extension for Galactic Understanding and Exploration-II (SEGUE-II) survey that trace the phase-space kinematics and chemistry out to ~70 kpc. A maximum a posteriori probability (MAP) estimate method and a Markov Chain Monte Carlo method are applied, taking into account the selection function in positions, distance, and metallicity for the survey. The best-fit EDF declines with actions less steeply at actions characteristic of the inner halo than at the larger actions characteristic of the outer halo, and older ages are found at smaller actions than at larger actions. In real space, the radial density profile steepens smoothly from -2 at ~2 kpc to -4 in the outer halo, with an axis ratio ~0.7 throughout. There is no indication for rotation in the BHBs, although this is highly uncertain. A moderate level of radial anisotropy is detected, with $beta_s$ varying from isotropic to between ~0.1 and ~0.3 in the outer halo depending on latitude. The BHB data are consistent with an age gradient of -0.03 Gyr kpc$^{-1}$, with some uncertainty in the distribution of the larger ages. These results are consistent with a scenario in which older, larger systems contribute to the inner halo, whilst the outer halo is primarily comprised of younger, smaller systems.
We present the structure of the Milky Way stellar halo beyond Galactocentric distances of $r = 50$ kpc traced by blue horizontal-branch (BHB) stars, which are extracted from the survey data in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We select BHB candidates based on $(g,r,i,z)$ photometry, where the $z$-band is on the Paschen series and the colors that involve the $z$-band are sensitive to surface gravity. About 450 BHB candidates are identified between $r = 50$ kpc and 300 kpc, most of which are beyond the reach of previous large surveys including the Sloan Digital Sky Survey. We find that the global structure of the stellar halo in this range has substructures, which are especially remarkable in the GAMA15H and XMM-LSS fields in the HSC-SSP. We find that the stellar halo can be fitted to a single power-law density profile with an index of $alpha simeq 3.3$ ($3.5$) with (without) these fields and its global axial ratio is $q simeq 2.2$ ($1.3$). Thus, the stellar halo may be significantly disturbed and be made in a prolate form by halo substructures, perhaps associated with the Sagittarius stream in its extension beyond $r sim 100$ kpc. For a broken power-law model allowing different power-law indices inside/outside a break radius, we obtain a steep power-law slope of $alpha sim 5$ outside a break radius of $simeq 100$ kpc ($200$ kpc) for the case with (without) GAMA15H and XMM-LSS. This radius of $200$ kpc might be as close as a halo boundary if there is any, although larger BHB sample is required from further HSC-SSP survey to increase its statistical significance.
Twenty years ago, Burstein et al. (1984)suggested that strong CN and Hbeta absorption meant younger ages among globular clusters in the Andromeda galaxy (M31), unless blue stars above the main-sequence turnoff or on the horizontal branch were uncommo nly prominent. Here we test these suggestions by fitting the detailed mid-ultraviolet (2280-3120A) and optical (3850-4750A) spectra of one moderately metal-rich M31 globular cluster, G1. We explore the effects of a wide range of non-solar temperatures and abundance ratios, by combining a small set of theoretical stellar spectra like those of Peterson et al. (2001) that were calculated using extensively updated atomic-line constants. To match the mid-UV fluxes of G1, we find that hot components with Teff >= 8000K must be included. We obtain a very good fit with cool and hot blue horizontal branch (BHB) stars, but less satisfactory fits for blue straggler stars, those hotter than the main-sequence turnoff. The G1 color-magnitude diagram does show cool BHB stars, and the color of its giant branch supports the metallicity of one-sixth the solar value that we deduce. The turnoff temperature of the best-fit model is consistent with that of turnoff stars in galactic globular clusters and the field halo, indicating G1 is comparably old. Because metal-rich cool BHB and extremely blue HB stars have now been found within our own Galaxy, we suggest that these hot horizontal-branch stars be considered in fitting spectra of metal-rich populations such as the Andromeda globular clusters, to avoid possible underestimates of their ages. We plan to make the relevant spectral calculations available as part of our Hubble Treasury Program.
We use 666 blue horizontal branch (BHB) stars from the 2Qz redshift survey to map the Galactic halo in four dimensions (position, distance and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index ~-2.5 in two different directions separated by 150 degrees on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase towards large radii while the stellar velocity distribution is non Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.
We investigate the performance of some common machine learning techniques in identifying BHB stars from photometric data. To train the machine learning algorithms, we use previously published spectroscopic identifications of BHB stars from SDSS data. We investigate the performance of three different techniques, namely k nearest neighbour classification, kernel density estimation and a support vector machine (SVM). We discuss the performance of the methods in terms of both completeness and contamination. We discuss the prospect of trading off these values, achieving lower contamination at the expense of lower completeness, by adjusting probability thresholds for the classification. We also discuss the role of prior probabilities in the classification performance, and we assess via simulations the reliability of the dataset used for training. Overall it seems that no-prior gives the best completeness, but adopting a prior lowers the contamination. We find that the SVM generally delivers the lowest contamination for a given level of completeness, and so is our method of choice. Finally, we classify a large sample of SDSS DR7 photometry using the SVM trained on the spectroscopic sample. We identify 27,074 probable BHB stars out of a sample of 294,652 stars. We derive photometric parallaxes and demonstrate that our results are reasonable by comparing to known distances for a selection of globular clusters. We attach our classifications, including probabilities, as an electronic table, so that they can be used either directly as a BHB star catalogue, or as priors to a spectroscopic or other classification method. We also provide our final models so that they can be directly applied to new data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا