ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Mixtures of Part Model for Human Pose Estimation

100   0   0.0 ( 0 )
 نشر من قبل Wenjuan Gong
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mixture of parts model has been successfully applied to 2D human pose estimation problem either as explicitly trained body part model or as latent variables for the whole human body model. Mixture of parts model usually utilize tree structure for representing relations between body parts. Tree structures facilitate training and referencing of the model but could not deal with double counting problems, which hinder its applications in 3D pose estimation. While most of work targeted to solve these problems tend to modify the tree models or the optimization target. We incorporate other cues from input features. For example, in surveillance environments, human silhouettes can be extracted relative easily although not flawlessly. In this condition, we can combine extracted human blobs with histogram of gradient feature, which is commonly used in mixture of parts model for training body part templates. The method can be easily extend to other candidate features under our generalized framework. We show 2D body part detection results on a public available dataset: HumanEva dataset. Furthermore, a 2D to 3D pose estimator is trained with Gaussian process regression model and 2D body part detections from the proposed method is fed to the estimator, thus 3D poses are predictable given new 2D body part detections. We also show results of 3D pose estimation on HumanEva dataset.



قيم البحث

اقرأ أيضاً

Estimating 3D human pose from a single image is a challenging task. This work attempts to address the uncertainty of lifting the detected 2D joints to the 3D space by introducing an intermediate state - Part-Centric Heatmap Triplets (HEMlets), which shortens the gap between the 2D observation and the 3D interpretation. The HEMlets utilize three joint-heatmaps to represent the relative depth information of the end-joints for each skeletal body part. In our approach, a Convolutional Network (ConvNet) is first trained to predict HEMlests from the input image, followed by a volumetric joint-heatmap regression. We leverage on the integral operation to extract the joint locations from the volumetric heatmaps, guaranteeing end-to-end learning. Despite the simplicity of the network design, the quantitative comparisons show a significant performance improvement over the best-of-grade method (by 20% on Human3.6M). The proposed method naturally supports training with in-the-wild images, where only weakly-annotated relative depth information of skeletal joints is available. This further improves the generalization ability of our model, as validated by qualitative comparisons on outdoor images.
We introduce HuMoR: a 3D Human Motion Model for Robust Estimation of temporal pose and shape. Though substantial progress has been made in estimating 3D human motion and shape from dynamic observations, recovering plausible pose sequences in the pres ence of noise and occlusions remains a challenge. For this purpose, we propose an expressive generative model in the form of a conditional variational autoencoder, which learns a distribution of the change in pose at each step of a motion sequence. Furthermore, we introduce a flexible optimization-based approach that leverages HuMoR as a motion prior to robustly estimate plausible pose and shape from ambiguous observations. Through extensive evaluations, we demonstrate that our model generalizes to diverse motions and body shapes after training on a large motion capture dataset, and enables motion reconstruction from multiple input modalities including 3D keypoints and RGB(-D) videos.
93 - ZiFan Chen , Xin Qin , Chao Yang 2021
The existing human pose estimation methods are confronted with inaccurate long-distance regression or high computational cost due to the complex learning objectives. This work proposes a novel deep learning framework for human pose estimation called composite localization to divide the complex learning objective into two simpler ones: a sparse heatmap to find the keypoints approximate location and two short-distance offsetmaps to obtain its final precise coordinates. To realize the framework, we construct two types of composite localization networks: CLNet-ResNet and CLNet-Hourglass. We evaluate the networks on three benchmark datasets, including the Leeds Sports Pose dataset, the MPII Human Pose dataset, and the COCO keypoints detection dataset. The experimental results show that our CLNet-ResNet50 outperforms SimpleBaseline by 1.14% with about 1/2 GFLOPs. Our CLNet-Hourglass outperforms the original stacked-hourglass by 4.45% on COCO.
Cross view feature fusion is the key to address the occlusion problem in human pose estimation. The current fusion methods need to train a separate model for every pair of cameras making them difficult to scale. In this work, we introduce MetaFuse, a pre-trained fusion model learned from a large number of cameras in the Panoptic dataset. The model can be efficiently adapted or finetuned for a new pair of cameras using a small number of labeled images. The strong adaptation power of MetaFuse is due in large part to the proposed factorization of the original fusion model into two parts (1) a generic fusion model shared by all cameras, and (2) lightweight camera-dependent transformations. Furthermore, the generic model is learned from many cameras by a meta-learning style algorithm to maximize its adaptation capability to various camera poses. We observe in experiments that MetaFuse finetuned on the public datasets outperforms the state-of-the-arts by a large margin which validates its value in practice.
3D human pose estimation is still a challenging problem despite the large amount of work that has been done in this field. Generally, most methods directly use neural networks and ignore certain constraints (e.g., reprojection constraints and joint a ngle and bone length constraints). This paper proposes a weakly supervised GAN-based model for 3D human pose estimation that considers 3D information along with 2D information simultaneously, in which a reprojection network is employed to learn the mapping of the distribution from 3D poses to 2D poses. In particular, we train the reprojection network and the generative adversarial network synchronously. Furthermore, inspired by the typical kinematic chain space (KCS) matrix, we propose a weighted KCS matrix, which is added into the discriminators input to impose joint angle and bone length constraints. The experimental results on Human3.6M show that our method outperforms state-of-the-art methods by approximately 5.1%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا