ﻻ يوجد ملخص باللغة العربية
Extensive investigations show that QED$_{3}$ exhibits dynamical fermion mass generation at zero temperature when the fermion flavor $N$ is sufficiently small. However, it seems difficult to extend the theoretical analysis to finite temperature. We study this problem by means of Dyson-Schwinger equation approach after considering the effect of finite temperature or disorder-induced fermion damping. Under the widely used instantaneous approximation, the dynamical mass displays an infrared divergence in both cases. We then adopt a new approximation that includes an energy-dependent gauge boson propagator and obtain results for dynamical fermion mass that do not contain infrared divergence. The validity of the new approximation is examined by comparing to the well-established results obtained at zero temperature.
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamical
We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagato
We use the critical point large $N$ formalism to calculate the critical exponents corresponding to the fermion mass operator and flavour non-singlet fermion bilinear operator in the universality class of Quantum Electrodynamics (QED) coupled to the G
We propose a novel approach to the Graphene system using a local field theory of 4 dimensional QED model coupled to 2+1 dimensional Dirac fermions, whose velocity is much smaller than the speed of light. Performing hybrid Monte Carlo simulations of t
Symmetric mass generation is the name given to a mechanism for gapping fermions while preserving a chiral, but necessarily non-anomalous, symmetry. In this paper we describe how symmetric mass generation for continuous symmetries can be achieved usin