Glass-like slow dynamics in a colloidal solid with multiple ground states


الملخص بالإنكليزية

We study the phase ordering dynamics of a two dimensional model colloidal solid using molecular dynamics simulations. The colloid particles interact with each other with a Hamaker potential modified by the presence of equatorial patches of attractive and negative regions. The total interaction potential between two such colloids is, therefore, strongly directional and has three-fold symmetry. Working in the canonical ensemble, we determine the tentative phase diagram in the density-temperature plane which features three distinct crystalline ground states viz, a low density honeycomb solid followed by a rectangular solid at higher density, which eventually transforms to a close packed triangular structure as the density is increased further. We show that when cooled rapidly from the liquid phase along isochores, the system undergoes a transition to a strong glass while slow cooling gives rise to crystalline phases. We claim that geometrical frustration arising from the presence of many crystalline ground states causes glassy ordering and dynamics in this solid. Our results may be easily confirmed by suitable experiments on patchy colloids.

تحميل البحث