ﻻ يوجد ملخص باللغة العربية
We study the phase ordering dynamics of a two dimensional model colloidal solid using molecular dynamics simulations. The colloid particles interact with each other with a Hamaker potential modified by the presence of equatorial patches of attractive and negative regions. The total interaction potential between two such colloids is, therefore, strongly directional and has three-fold symmetry. Working in the canonical ensemble, we determine the tentative phase diagram in the density-temperature plane which features three distinct crystalline ground states viz, a low density honeycomb solid followed by a rectangular solid at higher density, which eventually transforms to a close packed triangular structure as the density is increased further. We show that when cooled rapidly from the liquid phase along isochores, the system undergoes a transition to a strong glass while slow cooling gives rise to crystalline phases. We claim that geometrical frustration arising from the presence of many crystalline ground states causes glassy ordering and dynamics in this solid. Our results may be easily confirmed by suitable experiments on patchy colloids.
Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect
We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid gr
We present numerical simulations of a model of cellulose consisting of long stiff rods, representing cellulose microfibrils, connected by stretchable crosslinks, representing xyloglucan molecules, hydrogen bonded to the microfibrils. Within a broad r
We use a simple model to extend network models for activated dynamics to a continuous landscape with a well-defined notion of distance and a direct connection to many-body systems. The model consists of a tracer in a high-dimensional funnel landscape
We develop a field-theoretic perturbation method preserving the fluctuation-dissipation relation (FDR) for the dynamics of the density fluctuations of a noninteracting colloidal gas plunged in a quenched Gaussian random field. It is based on an expan