ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryon Content of Massive Galaxy Clusters (0.57 < z < 1.33)

174   0   0.0 ( 0 )
 نشر من قبل I-Non Tim Chiu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift $z=0.9$ and median mass $M_{500}=6times10^{14}M_{odot}$. We estimate stellar masses for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zeldovich Effect signature. At $z=0.9$ the BCG mass $M_{star}^{textrm{BCG}}$ constitutes $0.12pm0.01$% of the halo mass for a $6times10^{14}M_{odot}$ cluster, and this fraction falls as $M_{500}^{-0.58pm0.07}$. The cluster stellar mass function has a characteristic mass $M_{0}=10^{11.0pm0.1}M_{odot}$, and the number of galaxies per unit mass in clusters is larger than in the field by a factor $1.65pm0.2$. Both results are consistent with measurements on group scales and at lower redshift. We combine our SPT sample with previously published samples at low redshift that we correct to a common initial mass function and for systematic differences in virial masses. We then explore mass and redshift trends in the stellar fraction (fstar), the ICM fraction (fICM), the cold baryon fraction (fc) and the baryon fraction (fb). At a pivot mass of $6times10^{14}M_{odot}$ and redshift $z=0.9$, the characteristic values are fstar=$1.1pm0.1$%, fICM=$9.6pm0.5$%, fc=$10.4pm1.2$% and fb=$10.7pm0.6$%. These fractions all vary with cluster mass at high significance, indicating that higher mass clusters have lower fstar and fc and higher fICM and fb. When accounting for a 15% systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass in these baryon fractions. (abridged)



قيم البحث

اقرأ أيضاً

141 - Yen-Ting Lin 2011
We study the relationship between two major baryonic components in galaxy clusters, namely the stars in galaxies, and the ionized gas in the intracluster medium (ICM), using 94 clusters that span the redshift range 0-0.6. Accurately measured total an d ICM masses from Chandra observations, and stellar masses derived from the Wide-field Infrared Survey Explorer and the Two-Micron All-Sky Survey allow us to trace the evolution of cluster baryon content in a self-consistent fashion. We find that, within r_{500}, the evolution of the ICM mass--total mass relation is consistent with the expectation of self-similar model, while there is no evidence for redshift evolution in the stellar mass--total mass relation. This suggests that the stellar mass and ICM mass in the inner parts of clusters evolve differently.
107 - A.Kravtsov 2009
Groups and clusters of galaxies occupy a special position in the hierarchy of large-scale cosmic structures because they are the largest and the most massive (from ~10^13 Msun to over 10^15 Msun) objects in the universe that have had time to undergo gravitational collapse. The large masses of clusters imply that their contents have been accreted from regions of ~8-40 comoving Mpc in size and should thus be representative of the mean matter content of the universe. During the next decade sensitive multi-wavelength observations should be able to map the radial distributions of all main mass components (stars, cold, warm, and hot gas and total mass) at z<~ 1 out to the virial radius. At the same time, comparative studies of real and simulated cluster samples sould allow us to use clusters as veritable astrophysical laboratories for studying galaxy formation, as well as testing our theoretical models of structure formation and underlying assumptions about fundamental physics governing the universe.
We estimate total mass ($M_{500}$), intracluster medium (ICM) mass ($M_{mathrm{ICM}}$) and stellar mass ($M_{star}$) in a Sunyaev-Zeldovich effect (SZE) selected sample of 91 galaxy clusters with masses $M_{500}gtrsim2.5times10^{14}M_{odot}$ and reds hift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $M_{500}$ are estimated from the SZE observable, the ICM masses $M_{mathrm{ICM}}$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $M_{star}$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $approx9$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called missing baryons outside cluster virial regions.
136 - R. Capasso , A. Saro , J. J. Mohr 2017
The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based on $sim$3000 passive, non-emis sion line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zeldovich effect (SZE) in the 2500~deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $Y_X$ measurements. However, the dynamical masses are lower (at the 2.2$sigma$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a $Lambda$CDM model with external cosmological priors, including CMB anisotropy data from Planck. The discrepancy grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $eta=0.63^{+0.13}_{-0.08}pm0.06$ (statistical and systematic), corresponding to a $2.6sigma$ discrepancy.
We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M50 0,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا