ﻻ يوجد ملخص باللغة العربية
In the weak ferromagnetic MnCO$_3$ system, a low-frequency collective spin excitation (magnon) is the hybridized oscillation of nuclear and electron spins coupled through the hyperfine interaction. By using a split-ring resonator, we performed transmission spectroscopy measurements of MnCO$_3$ system and observed, for the first time, avoiding crossing between the hybridized nuclear-electron magnon mode and the resonator mode in the NMR-frequency range. The splitting strength is quite large due to the large spin density of $^{55}$Mn, and the cooperativity value $C=0.2$ (magnon-photon coupling parameter) is close to the conditions of strong coupling. The results reveal a new class of spin systems, in which the coupling between nuclear spins and photons is mediated by electron spins via the hyperfine interaction, and in which the similar normal-mode splitting of the hybridized nuclear magnon mode and the resonator mode can be observed.
Normal--mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show
We investigate the transfer and control of nonreciprocity through magnons themselves in permalloy thin films deposited on surface oxide silicon substrate. Evidences of nonreciprocal emergence of hybridized dipole exchange magnons (spin waves) at two
We systematically study the indirect interaction between a magnon mode and a cavity photon mode mediated by travelling photons of a waveguide. From a general Hamiltonian, we derive the effective coupling strength between two separated modes, and obta
Thorough control of quantum measurement is key to the development of quantum information technologies. Many measurements are destructive, removing more information from the system than they obtain. Quantum non-demolition (QND) measurements allow repe
We investigate the non-classical states of light that emerge in a microwave resonator coupled to a periodically-driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a therma