ترغب بنشر مسار تعليمي؟ اضغط هنا

A Unified Model of the Fermi Bubbles, Microwave Haze, and Polarized Radio Lobes: Reverse Shocks in the Galactic Centers Giant Outflows

257   0   0.0 ( 0 )
 نشر من قبل Roland M. Crocker
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Galactic Centers giant outflows are manifest in three different, non-thermal phenomena: i) the hard-spectrum, gamma-ray `Fermi Bubbles emanating from the nucleus and extending to |b| ~ 50 degrees; ii) the hard-spectrum, total-intensity microwave (~ 20-40 GHz) `Haze extending to |b| ~ 35 degrees in the lower reaches of the Fermi Bubbles; and iii) the steep spectrum, polarized, `S-PASS radio (~ 2-20 GHz) Lobes that envelop the Bubbles and extend to |b| ~ 60 degrees. We find that the nuclear outflows inflate a genuine bubble in each Galactic hemisphere that has the classical structure, working outwards, of reverse shock, contact discontinuity, and forward shock. Expanding into the finite pressure of the halo and given appreciable cooling and gravitational losses, the contact discontinuity of each bubble is now expanding only very slowly. We find observational signatures in both hemispheres of giant, reverse shocks at heights of ~ 1 kpc above the nucleus; their presence ultimately explains all three of the non-thermal phenomena mentioned above. Synchrotron emission from shock-reaccelerated cosmic-ray electrons explains the spectrum, morphology, and vertical extent of the microwave Haze and the polarized radio Lobes. Collisions between shock-reaccelerated hadrons and denser gas in cooling condensations that form inside the contact discontinuity account for most of the Bubbles gamma-ray emissivity.



قيم البحث

اقرأ أيضاً

130 - Philipp Mertsch 2018
The discovery of the Fermi bubbles---a huge bilobular structure seen in GeV gamma-rays above and below the Galactic center---implies the presence of a large reservoir of high energy particles at $sim 10 , text{kpc}$ from the disk. The absence of evid ence for a strong shock coinciding with the edge of the bubbles, and constraints from multi-wavelength observations point towards stochastic acceleration by turbulence as a likely mechanism of acceleration. We have investigated the time-dependent acceleration of electrons in a large-scale outflow from the Galactic centre. For the first time, we present a detailed numerical solution of the particle kinetic equation that includes the acceleration, transport and relevant energy loss processes. We also take into account the addition of shock acceleration of electrons at the bubbles blast wave. Fitting to the observed spectrum and surface brightness distribution of the bubbles allows determining the transport coefficients, thereby shedding light on the origin of the Fermi bubbles.
The origin of ultra-high energy cosmic rays (UHECRs) has been an open question for decades. Here, we use a combination of hydrodynamic simulations and general physical arguments to demonstrate that UHECRs can in principle be produced by diffusive sho ck acceleration (DSA) in shocks in the backflowing material of radio galaxy lobes. These shocks occur after the jet material has passed through the relativistic termination shock. Recently, several authors have demonstrated that highly relativistic shocks are not effective in accelerating UHECRs. The shocks in our proposed model have a range of non-relativistic or mildly relativistic shock velocities more conducive to UHECR acceleration, with shock sizes in the range 1-10kpc. Approximately 10% of the jets energy flux is focused through a shock in the backflow of $M>3$. Although the shock velocities can be low enough that acceleration to high energy via DSA is still efficient, they are also high enough for the Hillas energy to approach $10^{19-20}$eV, particularly for heavier CR composition and in cases where fluid elements pass through multiple shocks. We discuss some of the more general considerations for acceleration of particles to ultra-high energy with reference to giant-lobed radio galaxies such as Centaurus A and Fornax A, a class of sources which may be responsible for the observed anisotropies from UHECR observatories.
94 - Ruiyu Zhang , Fulai Guo 2020
The Fermi bubbles are two giant bubbles in gamma rays lying above and below the Galactic center (GC). Despite numerous studies on the bubbles, their origin and emission mechanism remain elusive. Here we use a suite of hydrodynamic simulations to stud y the scenario where the cosmic rays (CRs) in the bubbles are mainly accelerated at the forward shocks driven by a pair of opposing jets from Sgr A*. We find that an active galactic nucleus (AGN) jet event happened $5-6$ Myr ago can naturally reproduce the bilobular morphology of the bubbles, and the postshock gas temperature in the bubbles is heated to $sim0.4$ keV, consistent with recent X-ray observations. The forward shocks compress the hot halo gas, and at low latitudes, the compressed gas shows an X-shaped structure, naturally explaining the biconical X-ray structure in the ROSAT 1.5 keV map in both morphology and X-ray surface brightness. CR acceleration is most efficient in the head regions of the bubbles during the first 2 Myrs. The opposing jets release a total energy of $sim 10^{55}$ erg with an Eddington ratio of $sim 10^{-3}$, which falls well in the range of the hot accretion flow mode for black holes. Our simulations further show that the forward shocks driven by spherical winds at the GC typically produce bubbles with much wider bases than observed, and could not reproduce the biconical X-ray structure at low latitudes. This suggests that starburst or AGN winds are unlikely the origin of the bubbles in the shock scenario.
Capture and tidal disruption of stars by the supermassive black hole in the Galactic center (GC) should occur regularly. The energy released and dissipated by this processes will affect both the ambient environment of the GC and the Galactic halo. A single star of super-Eddington eruption generates a subsonic out ow with an energy release of more than $10^{52}$ erg, which still is not high enough to push shock heated gas into the halo. Only routine tidal disruption of stars near the GC can provide enough cumulative energy to form and maintain large scale structures like the Fermi Bubbles. The average rate of disruption events is expected to be $10^{-4}$ ~ $10^{-5}$ yr$^{-1}$, providing the average power of energy release from the GC into the halo of dW/dt ~ 3*10$^{41}$ erg/s, which is needed to support the Fermi Bubbles. The GC black hole is surrounded by molecular clouds in the disk, but their overall mass and filling factor is too low to stall the shocks from tidal disruption events significantly. The de facto continuous energy injection on timescales of Myr will lead to the propagation of strong shocks in a density stratified Galactic halo and thus create elongated bubble-like features, which are symmetric to the Galactic midplane.
We investigate roles of magnetic activity in the Galactic bulge region in driving large-scale outflows of size $sim 10$ kpc. Magnetic buoyancy and breakups of channel flows formed by magnetorotational instability excite Poynting flux by the magnetic tension force. A three-dimensional global numerical simulation shows that the average luminosity of such Alfvenic Poynting flux is $10^{40} - 10^{41}$ erg s$^{-1}$. We examine the energy and momentum transfer from the Poynting flux to the gas by solving time-dependent hydrodynamical simulations with explicitly taking into account low-frequency Alfvenic waves of period of 0.5 Myr in a one-dimensional vertical magnetic flux tube. The Alfvenic waves propagate upward into the Galactic halo, and they are damped through the propagation along meandering magnetic field lines. If the turbulence is nearly trans-Alfv{e}nic, the wave damping is significant, which leads to the formation of an upward propagating shock wave. At the shock front, the temperature $gtrsim 5times 10^6$ K, the density $approx 6times 10^{-4}$ cm$^{-3}$, and the outflow velocity $approx 400-500$ km s$^{-1}$ at a height $approx 10$ kpc, which reasonably explain the basic physical properties of the thermal component of the Fermi bubbles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا