ﻻ يوجد ملخص باللغة العربية
Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental many-body interactions. However, owing to its high instability, unambiguous identification of monolayer phosphorene has been elusive. Consequently, many important fundamental properties, such as exciton dynamics, remain underexplored. We report a rapid, noninvasive, and highly accurate approach based on optical interferometry to determine the layer number of phosphorene, and confirm the results with reliable photoluminescence measurements. Based on the measured optical gap and the calculated electronic energy gap, we determined the exciton binding energy to be ~0.4 eV for the monolayer phosphorene on SiO2/Si substrate, which agrees well with theoretical predictions. Our results open new avenues for exploring fundamental phenomena and novel optoelectronic applications using monolayer phosphorene.
Two-dimensional (2D) monolayer phosphorene, a 2D system with quasi-one-dimensional (quasi-1D) excitons, provides a unique 2D platform for investigating the dynamics of excitons in reduced dimensions and fundamental many-body interactions. However, on
The two-dimensional semiconductor phosphorene has attracted extensive research interests for potential applications in optoelectronics, spintronics, catalysis, sensors, and energy conversion. To harness phosphorenes potential requires a better unders
There have been continuous efforts to seek for novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful experimental approach to fabr
Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental dynamics of excitons and trions (charged excitons) in reduced dimensions. However, owing to its high instability, unambiguous identification of monol
In the current extensive studies of transition metal dichalcogenides (TMDCs), compared to hexagonal layered materials, like graphene, hBN and MoS2, low symmetry layered 2D crystals showed great potential for applications in anisotropic devices. Rheni