ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Transfer and Reducibility of Induced Representations of $p$-adic Groups of Classical Type

154   0   0.0 ( 0 )
 نشر من قبل Mahdi Asgari
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze reducibility points of representations of $p$-adic groups of classical type, induced from generic supercuspidal representations of maximal Levi subgroups, both on and off the unitary axis. We are able to give general, uniform results in terms of local functorial transfers of the generic representations of the groups we consider. The existence of the local transfers follows from global generic transfers that were established earlier.



قيم البحث

اقرأ أيضاً

We construct a Langlands parameterization of supercuspidal representations of $G_2$ over a $p$-adic field. More precisely, for any finite extension $K / QQ_p$ we will construct a bijection [ CL_g : CA^0_g(G_2,K) rightarrow CG^0(G_2,K) ] from the set of generic supercuspidal representations of $G_2(K)$ to the set of irreducible continuous homomorphisms $rho : W_K to G_2(CC)$ with $W_K$ the Weil group of $K$. The construction of the map is simply a matter of assembling arguments that are already in the literature, together with a previously unpublished theorem of G. Savin on exceptional theta correspondences, included as an appendix. The proof that the map is a bijection is arithmetic in nature, and specifically uses automorphy lifting theorems. These can be applied thanks to a recent result of Hundley and Liu on automorphic descent from $GL(7)$ to $G_2$.
Let $p$ be a prime number and $K$ a finite extension of $mathbb{Q}_p$. We state conjectures on the smooth representations of $mathrm{GL}_n(K)$ that occur in spaces of mod $p$ automorphic forms (for compact unitary groups). In particular, when $K$ is unramified, we conjecture that they are of finite length and predict their internal structure (extensions, form of subquotients) from the structure of a certain algebraic representation of $mathrm{GL}_n$. When $n=2$ and $K$ is unramified, we prove several cases of our conjectures, including new finite length results.
We establish the local Langlands conjecture for small rank general spin groups $GSpin_4$ and $GSpin_6$ as well as their inner forms. We construct appropriate $L$-packets and prove that these $L$-packets satisfy the properties expected of them to the extent that the corresponding local factors are available. We are also able to determine the exact sizes of the $L$-packets in many cases.
Let $F/F^+$ be a CM field and let $widetilde{v}$ be a finite unramified place of $F$ above the prime $p$. Let $overline{r}: mathrm{Gal}(overline{mathbb{Q}}/F)rightarrow mathrm{GL}_n(overline{mathbb{F}}_p)$ be a continuous representation which we assu me to be modular for a unitary group over $F^+$ which is compact at all real places. We prove, under Taylor--Wiles hypotheses, that the smooth $mathrm{GL}_n(F_{widetilde{v}})$-action on the corresponding Hecke isotypical part of the mod-$p$ cohomology with infinite level above $widetilde{v}|_{F^+}$ determines $overline{r}|_{mathrm{Gal}(overline{mathbb{Q}}_p/F_{widetilde{v}})}$, when this latter restriction is Fontaine--Laffaille and has a suitably generic semisimplification.
176 - Mahdi Asgari , Ralf Schmidt 2007
We explicitly compute the adjoint L-function of those L-packets of representations of the group GSp(4) over a p-adic field of characteristic zero that contain non-supercuspidal representations. As an application we verify a conjecture of Gross-Prasad and Rallis in this case. The conjecture states that the adjoint L-function has a pole at s=1 if and only if the L-packet contains a generic representation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا