In the recent years it turned out that multidimensional recurrent neural networks (MDRNN) perform very well for offline handwriting recognition tasks like the OpenHaRT 2013 evaluation DIR. With suitable writing preprocessing and dictionary lookup, our ARGUS software completed this task with an error rate of 26.27% in its primary setup.
Arabic handwriting is a consonantal and cursive writing. The analysis of Arabic script is further complicated due to obligatory dots/strokes that are placed above or below most letters and usually written delayed in order. Due to ambiguities and dive
rsities of writing styles, recognition systems are generally based on a set of possible words called lexicon. When the lexicon is small, recognition accuracy is more important as the recognition time is minimal. On the other hand, recognition speed as well as the accuracy are both critical when handling large lexicons. Arabic is rich in morphology and syntax which makes its lexicon large. Therefore, a practical online handwriting recognition system should be able to handle a large lexicon with reasonable performance in terms of both accuracy and time. In this paper, we introduce a fully-fledged Hidden Markov Model (HMM) based system for Arabic online handwriting recognition that provides solutions for most of the difficulties inherent in recognizing the Arabic script. A new preprocessing technique for handling the delayed strokes is introduced. We use advanced modeling techniques for building our recognition system from the training data to provide more detailed representation for the differences between the writing units, minimize the variances between writers in the training data and have a better representation for the features space. System results are enhanced using an additional post-processing step with a higher order language model and cross-word HMM models. The system performance is evaluated using two different databases covering small and large lexicons. Our system outperforms the state-of-art systems for the small lexicon database. Furthermore, it shows promising results (accuracy and time) when supporting large lexicon with the possibility for adapting the models for specific writers to get even better results.
Arabic is a semitic language characterized by a complex and rich morphology. The exceptional degree of ambiguity in the writing system, the rich morphology, and the highly complex word formation process of roots and patterns all contribute to making
computational approaches to Arabic very challenging. As a result, a practical handwriting recognition system should support large vocabulary to provide a high coverage and use the context information for disambiguation. Several research efforts have been devoted for building online Arabic handwriting recognition systems. Most of these methods are either using their small private test data sets or a standard database with limited lexicon and coverage. A large scale handwriting database is an essential resource that can advance the research of online handwriting recognition. Currently, there is no online Arabic handwriting database with large lexicon, high coverage, large number of writers and training/testing data. In this paper, we introduce AltecOnDB, a large scale online Arabic handwriting database. AltecOnDB has 98% coverage of all the possible PAWS of the Arabic language. The collected samples are complete sentences that include digits and punctuation marks. The collected data is available on sentence, word and character levels, hence, high-level linguistic models can be used for performance improvements. Data is collected from more than 1000 writers with different backgrounds, genders and ages. Annotation and verification tools are developed to facilitate the annotation and verification phases. We built an elementary recognition system to test our database and show the existing difficulties when handling a large vocabulary and dealing with large amounts of styles variations in the collected data.
We propose a novel transformer-based styled handwritten text image generation approach, HWT, that strives to learn both style-content entanglement as well as global and local writing style patterns. The proposed HWT captures the long and short range
relationships within the style examples through a self-attention mechanism, thereby encoding both global and local style patterns. Further, the proposed transformer-based HWT comprises an encoder-decoder attention that enables style-content entanglement by gathering the style representation of each query character. To the best of our knowledge, we are the first to introduce a transformer-based generative network for styled handwritten text generation. Our proposed HWT generates realistic styled handwritten text images and significantly outperforms the state-of-the-art demonstrated through extensive qualitative, quantitative and human-based evaluations. The proposed HWT can handle arbitrary length of text and any desired writing style in a few-shot setting. Further, our HWT generalizes well to the challenging scenario where both words and writing style are unseen during training, generating realistic styled handwritten text images.
Handwritten text recognition is challenging because of the virtually infinite ways a human can write the same message. Our fully convolutional handwriting model takes in a handwriting sample of unknown length and outputs an arbitrary stream of symbol
s. Our dual stream architecture uses both local and global context and mitigates the need for heavy preprocessing steps such as symbol alignment correction as well as complex post processing steps such as connectionist temporal classification, dictionary matching or language models. Using over 100 unique symbols, our model is agnostic to Latin-based languages, and is shown to be quite competitive with state of the art dictionary based methods on the popular IAM and RIMES datasets. When a dictionary is known, we further allow a probabilistic character error rate to correct errant word blocks. Finally, we introduce an attention based mechanism which can automatically target variants of handwriting, such as slant, stroke width, or noise.
This paper introduces an agent-centric approach to handle novelty in the visual recognition domain of handwriting recognition (HWR). An ideal transcription agent would rival or surpass human perception, being able to recognize known and new character
s in an image, and detect any stylistic changes that may occur within or across documents. A key confound is the presence of novelty, which has continued to stymie even the best machine learning-based algorithms for these tasks. In handwritten documents, novelty can be a change in writer, character attributes, writing attributes, or overall document appearance, among other things. Instead of looking at each aspect independently, we suggest that an integrated agent that can process known characters and novelties simultaneously is a better strategy. This paper formalizes the domain of handwriting recognition with novelty, describes a baseline agent, introduces an evaluation protocol with benchmark data, and provides experimentation to set the state-of-the-art. Results show feasibility for the agent-centric approach, but more work is needed to approach human-levels of reading ability, giving the HWR community a formal basis to build upon as they solve this challenging problem.