ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rich Are Different: Evidence from the RAVE Survey for Stellar Radial Migration

102   0   0.0 ( 0 )
 نشر من قبل Georges Kordopatis
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the RAdial Velocity Experiment fourth data release (RAVE DR4), and a new metallicity calibration that will be also taken into account in the future RAVE DR5, we investigate the existence and the properties of super-solar metallicity stars ([M/H] > +0.1 dex) in the sample, and in particular in the Solar neighbourhood. We find that RAVE is rich in super-solar metallicity stars, and that the local metallicity distribution function declines remarkably slowly up to +0.4 dex. Our results show that the kinematics and height distributions of the super-solar metallicity stars are identical to those of the [M/H] < 0 thin-disc giants that we presume were locally manufactured. The eccentricities of the super-solar metallicity stars indicate that half of them are on a roughly circular orbit (e < 0.15), so under the assumption that the metallicity of the interstellar medium at a given radius never decreases with time, they must have increased their angular momenta by scattering at corotation resonances of spiral arms from regions far inside the Solar annulus. The likelihood that a star will migrate radially does not seem to decrease significantly with increasing amplitude of vertical oscillations within range of oscillation amplitudes encountered in the disc.



قيم البحث

اقرأ أيضاً

We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations coveri ng a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280 (~5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars of NGC 7793 extend significantly farther than the underlying HI disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.
133 - B. Burnett , J. Binney , S. Sharma 2011
We apply the method of Burnett & Binney (2010) for the determination of stellar distances and parameters to the internal catalogue of the Radial Velocity Experiment (Steinmetz et al. 2006). Subsamples of stars that either have Hipparcos parallaxes or belong to well-studied clusters, inspire confidence in the formal errors. Distances to dwarfs cooler than ~6000 K appear to be unbiased, but those to hotter dwarfs tend to be too small by ~10% of the formal errors. Distances to giants tend to be too large by about the same amount. The median distance error in the whole sample of 216,000 stars is 28% and the error distribution is similar for both giants and dwarfs. Roughly half the stars in the RAVE survey are giants. The giant fraction is largest at low latitudes and in directions towards the Galactic Centre. Near the plane the metallicity distribution is remarkably narrow and centred on [M/H]-0.04 dex; with increasing |z| it broadens out and its median moves to [M/H] ~ -0.5. Mean age as a function of distance from the Galactic centre and distance |z| from the Galactic plane shows the anticipated increase in mean age with |z|.
Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of consi derable interest. We demonstrate here that stars with iron abundances [Fe/H] < -2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the Calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] <= -2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] < -2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] <= -4. Of these, one was already known to be `ultra metal-poor, one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H]= -4.0, rather than the published [Fe/H]=-3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our S/N. RAVE observations are on-going and should prove to be a rich source of bright, easily studied, very metal-poor stars.
We present the third data release of the RAdial Velocity Experiment (RAVE) which is the first milestone of the RAVE project, releasing the full pilot survey. The catalog contains 83,072 radial velocity measurements for 77,461 stars in the southern ce lestial hemisphere, as well as stellar parameters for 39,833 stars. This paper describes the content of the new release, the new processing pipeline, as well as an updated calibration for the metallicity based upon the observation of additional standard stars. Spectra will be made available in a future release. The data release can be accessed via the RAVE webpage: http://www.rave-survey.org.
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances and distances determined for 425 561 stars, which constitute the fourth public data release of the R Adial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the 2MASS photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron and nickel) are also given, based on a special-purpose pipeline which is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration website and the Vizier database.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا