ﻻ يوجد ملخص باللغة العربية
We introduce notions of absolutely non-free and perfectly non-free group actions and use them to study the associated unitary representations. We show that every weakly branch group acts absolutely non-freely on the boundary of the associated rooted tree. Using this result and the symmetrized diagonal actions we construct for every countable branch group infinitely many different ergodic perfectly non-free actions, infinitely many II$_1$-factor representations, and infinitely many continuous ergodic invariant random subgroups.
Let $q$ be a power of a prime $p$, let $G$ be a finite Chevalley group over $mathbb{F}_q$ and let $U$ be a Sylow $p$-subgroup of $G$; we assume that $p$ is not a very bad prime for $G$. We explain a procedure of reduction of irreducible complex chara
In this paper we study finite p-solvable groups having irreducible complex characters chi in Irr(G) which take roots of unity values on the p-singular elements of G.
Let $BS(1,n) =< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ ngeq 2$. It is known that BS(1,n) is isomorphic to the group generated by the two affine maps of the real line: $f_0(x) = x + 1$ and $h_0(x) = nx $. This pap
In this paper, we study the actions of profinite groups on Cantor sets which arise from representations of Galois groups of certain fields of rational functions. Such representations are associated to polynomials, and they are called profinite iterat
Let $G$ be a finite group and let $p$ be a prime. Assume that there exists a prime $q$ dividing $|G|$ which does not divide the order of any $p$-local subgroup of $G$. If $G$ is $p$-solvable or $q$ divides $p-1$, then $G$ has a $p$-block of defect ze