The reversal of the SF-density relation in a massive, X-ray selected galaxy cluster at z=1.58: results from Herschel


الملخص بالإنكليزية

Dusty, star-forming galaxies have a critical role in the formation and evolution of massive galaxies in the Universe. Using deep far-infrared imaging in the range 100-500um obtained with the Herschel telescope, we investigate the dust-obscured star formation in the galaxy cluster XDCP J0044.0-2033 at z=1.58, the most massive cluster at z >1.5, with a measured mass M200= 4.7x10$^{14}$ Msun. We perform an analysis of the spectral energy distributions (SEDs) of 12 cluster members (5 spectroscopically confirmed) detected with >3$sigma$ significance in the PACS maps, all ULIRGs. The individual star formation rates (SFRs) lie in the range 155-824 Ms/yr, with dust temperatures of 24$pm$35 K. We measure a strikingly high amount of star formation (SF) in the cluster core, SFR (< 250 kpc) > 1875$pm$158 Ms/yr, 4x higher than the amount of star formation in the cluster outskirts. This scenario is unprecedented in a galaxy cluster, showing for the first time a reversal of the SF-density relation at z~1.6 in a massive cluster.

تحميل البحث