ﻻ يوجد ملخص باللغة العربية
Dusty, star-forming galaxies have a critical role in the formation and evolution of massive galaxies in the Universe. Using deep far-infrared imaging in the range 100-500um obtained with the Herschel telescope, we investigate the dust-obscured star formation in the galaxy cluster XDCP J0044.0-2033 at z=1.58, the most massive cluster at z >1.5, with a measured mass M200= 4.7x10$^{14}$ Msun. We perform an analysis of the spectral energy distributions (SEDs) of 12 cluster members (5 spectroscopically confirmed) detected with >3$sigma$ significance in the PACS maps, all ULIRGs. The individual star formation rates (SFRs) lie in the range 155-824 Ms/yr, with dust temperatures of 24$pm$35 K. We measure a strikingly high amount of star formation (SF) in the cluster core, SFR (< 250 kpc) > 1875$pm$158 Ms/yr, 4x higher than the amount of star formation in the cluster outskirts. This scenario is unprecedented in a galaxy cluster, showing for the first time a reversal of the SF-density relation at z~1.6 in a massive cluster.
We investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z=1.58, which constitutes the most extreme matter density peak at this redshift currently known. We analyze deep VLT/HAWK-I NIR data
Recent large surveys have found a reversal of the star formation rate (SFR)-density relation at z=1 from that at z=0 (e.g. Elbaz et al.; Cooper et al.), while the sign of the slope of the color-density relation remains unchanged (e.g. Cucciati et al.
We discovered an over-density of H-alpha-emitting galaxies associated with a Planck compact source in the COSMOS field (PHzG237.0+42.5) through narrow-band imaging observations with Subaru/MOIRCS. This Planck-selected dusty proto-cluster at z=2.16 ha
We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance lev
We report the X-ray detection of two z>1.4 infrared-selected galaxy clusters from the IRAC Shallow Cluster Survey (ISCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm cluster ISCS J