ﻻ يوجد ملخص باللغة العربية
Relativistic jets in active galactic nuclei represent one of the most powerful phenomena in the Universe. They form in the surroundings of the supermassive black holes as a by-product of accretion onto the central black hole in active galaxies. The flow in the jets propagates at velocities close to the speed of light. The distance between the first part of the jet that is visible in radio images (core) and the black hole is still a matter of debate. Only very-long-baseline interferometry observations resolve the innermost compact regions of the radio jet. Those can access the jet base, and combining data at different wavelenghts, address the physical parameters of the outflow from its emission. We have performed an accurate analysis of the frequency-dependent shift of the VLBI core location for a multi-wavelength set of images of the blazar CTA 102 including data from 6 cm down to 3 mm. The measure of the position of the central black hole, with mass $sim 10^{8.93},M_odot$, in the blazar CTA 102 reveals a distance of $sim 8times10^4$ gravitational radii to the 86 GHz core, in agreement with similar measures obtained for other blazars and distant radio galaxies, and in contrast with recent results for the case of nearby radio galaxies, which show distances between the black hole and the radio core that can be two orders of magnitude smaller.
Spin measurements of supermassive black holes (SMBHs) provide crucial constraints on the accretion processes that power active galactic nuclei (AGN), fuel outflows, and trigger black hole growth. However, spin measurements are mainly limited to a few
Supermassive black hole binaries (SMBHBs) should form frequently in galactic nuclei as a result of galaxy mergers. At sub-parsec separations, binaries become strong sources of low-frequency gravitational waves (GWs), targeted by Pulsar Timing Arrays
We consider black hole - galaxy coevolution using simple analytic arguments. We focus on the fact that several supermassive black holes are known with masses significantly larger than suggested by the $M - {sigma}$ relation, sometimes also with rathe
Graham et al. (2015a) reported a periodically varying quasar and supermassive black hole binary candidate, PG1302-102 (hereafter PG1302), which was discovered in the Catalina Real-Time Transient Survey (CRTS). Its combined Lincoln Near-Earth Asteroid
PG1302-102 is thought to be a supermassive binary black hole (BBH) system according to the periodical variations of its optical and UV photometry, which may be interpreted as being due to the relativistic Doppler boosting of the emission mainly from