ﻻ يوجد ملخص باللغة العربية
The abundance of massive galaxy clusters is a powerful probe of departures from General Relativity (GR) on cosmic scales. Despite current stringent constraints placed by stellar and galactic tests, on larger scales alternative theories of gravity such as $f(R)$ can still work as effective theories. Here we present constraints on two popular models of $f(R)$, Hu-Sawicki and designer, derived from a fully self-consistent analysis of current samples of X-ray selected clusters and accounting for all the covariances between cosmological and astrophysical parameters. Using cluster number counts in combination with recent data from the cosmic microwave background (CMB) and the CMB lensing potential generated by large scale structures, as well as with other cosmological constraints on the background expansion history and its mean matter density, we obtain the upper bounds $log_{10}|f_{R0}| < 4.79$ and $log_{10}B_0 < 3.75$ at the 95.4 per cent confidence level, for the Hu-Sawicki (with $n=1$) and designer models, respectively. The robustness of our results derives from high quality cluster growth data for the most massive clusters known out to redshifts $z sim 0.5$, a tight control of systematic uncertainties including an accurate and precise mass calibration from weak gravitational lensing data, and the use of the full shape of the halo mass function over the mass range of our data.
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newtons potential given by $f(R)$ gravity. We compute the corrected $N$-particle partition function analy
We present the first analysis of extended stellar kinematics of elliptical galaxies where a Yukawa--like correction to the Newtonian gravitational potential derived from f(R)-gravity is considered as an alternative to dark matter. In this framework,
Big bang nucleosynthesis in a modified gravity model of $f(R)propto R^n$ is investigated. The only free parameter of the model is a power-law index $n$. We find cosmological solutions in a parameter region of $1< n leq (4+sqrt{6})/5$. We calculate ab
We present a Markov chain Monte Carlo pipeline that can be used for robust and unbiased constraints of $f(R)$ gravity using galaxy cluster number counts. This pipeline makes use of a detailed modelling of the halo mass function in $f(R)$ gravity, whi
We investigate the viable exponential $f(R)$ gravity in the metric formalism with $f(R)=-beta R_s (1-e^{-R/R_s})$. The latest sample of the Hubble parameter measurements with 23 data points is used to place bounds on this $f(R)$ model. A joint analys