ﻻ يوجد ملخص باللغة العربية
In this paper, we are concern with the multiplicity of solutions for a p-Laplacian problem. A weaker super-quadratic assumptions is required on the nonlinearity. Under the weaker condition we give a new proof for the infinite solutions having a prescribed number of nodes to the problem. It turns out that the weaker condition on nonlinearity suffices to guarantee the infinitely many solutions. At the same time, a global characterization of the critical values of the nodal radial solutions are given.
In this paper, we apply blow-up analysis and Liouville type theorems to study pointwise a priori estimates for some quasilinear equations with p-Laplace operator. We first obtain pointwise interior estimates for the gradient of p-harmonic function, i
Nodal solutions of a parametric (p_1,p_2)-Laplacian system, with Neumann boundary conditions, are obtained by chiefly constructing appropriate sub-super-solution pairs.
We establish the existence and multiplicity of positive solutions to the problems involving the fractional Laplacian: begin{equation*} left{begin{array}{lll} &(-Delta)^{s}u=lambda u^{p}+f(u),,,u>0 quad &mbox{in},,Omega, &u=0quad &mbox{in},,mathbb{R}^
We investigate the existence of infinitely many radially symmetric solutions to the following problem $$(-Delta_p)^s u=g(u) textrm{ in } mathbb{R}^N, uin W^{s,p}(mathbb{R}^N),$$ where $sin (0,1)$, $2 leq p < infty$, $sp leq N $, $2 leq N in mat
A Dirichlet problem driven by the $(p,q)$-Laplace operator and an asymmetric concave reaction with positive parameter is investigated. Four nontrivial smooth solutions (two positive, one negative, and the remaining nodal) are obtained once the parame