ﻻ يوجد ملخص باللغة العربية
For software development companies, one of the most important objectives is to identify and acquire talented software engineers in order to maintain a skilled team that can produce competitive products. Traditional approaches for finding talented young software engineers are mainly through programming contests of various forms which mostly test participants programming skills. However, successful software engineering in practice requires a wider range of skills from team members including analysis, design, programming, testing, communication, collaboration, and self-management, etc. In this paper, we explore potential ways to identify talented software engineering students in a data-driven manner through an Agile Project Management (APM) platform. Through our proposed HASE online APM tool, we conducted a study involving 21 Scrum teams consisting of over 100 undergraduate software engineering students in multi-week coursework projects in 2014. During this study, students performed over 10,000 ASD activities logged by HASE. We demonstrate the possibility and potentials of this new research direction, and discuss its implications for software engineering education and industry recruitment.
Internet of Things Driven Data Analytics (IoT-DA) has the potential to excel data-driven operationalisation of smart environments. However, limited research exists on how IoT-DA applications are designed, implemented, operationalised, and evolved in
Identifying potentially vulnerable locations in a code base is critical as a pre-step for effective vulnerability assessment; i.e., it can greatly help security experts put their time and effort to where it is needed most. Metric-based and pattern-ba
Statistics comes in two main flavors: frequentist and Bayesian. For historical and technical reasons, frequentist statistics have traditionally dominated empirical data analysis, and certainly remain prevalent in empirical software engineering. This
Context: The utility of prediction models in empirical software engineering (ESE) is heavily reliant on the quality of the data used in building those models. Several data quality challenges such as noise, incompleteness, outliers and duplicate data
Reliable empirical models such as those used in software effort estimation or defect prediction are inherently dependent on the data from which they are built. As demands for process and product improvement continue to grow, the quality of the data u