ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-step antiferromagnetic transition and moderate triangular frustration in Li2Co(WO4)2

111   0   0.0 ( 0 )
 نشر من قبل I Panneer Muthuselvam
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed investigation of the magnetic properties of the spin-$frac{3}{2}$ system Li$_2$Co(WO$_4$)$_2$ by means of magnetic susceptibility and specific heat. Our experimental results show that in Li$_2$Co(WO$_4$)$_2$ a short-range antiferromagnetic (AFM) correlations appear near $chi$$_{max}$ $sim$ 11 K and two successive long-range AFM phase transitions are observed at T$_{N1}$$sim$ 9 K and T$_{N2}$$sim$ 7 K. The frustration factor, $mid$$Theta$$mid$/T$_{N1}$$sim$3, indicates that the system is moderately frustrated, which is identifiable by the broken triangular symmetry within both $ab$- and $bc$-planes for the triclinic crystal structure. The magnetic isotherm at temperatures below T$_{N2}$ shows a field-induced spin-flop transition, and a complete H-T phase diagram for the two-step AFM system is mapped. $Ab$~$initio$ band structure calculations suggest that the strongest exchange coupling does not correspond to the shortest Co-Co distance along the $a$-axis, but rather along the diagonal direction through a Co-O-W-O-Co super-superexchange path within the $bc$-plane



قيم البحث

اقرأ أيضاً

163 - B. Nafradi , A. Antal , T. Feher 2016
The $1/4$-filled organic compound, $delta$-(EDT-TTF-CONMe$_{2}$)$_{2}$AsF$_6$ is a frustrated two-dimensional triangular magnetic system as shown by high-frequency (111.2 and 222.4 GHz) electron spin resonance (ESR) and structural data in the literat ure. The material gradually orders antiferromagnetically below 40~K but some magnetically disordered domains persist down to 4 K. We propose that in defect free regions frustration prevents true magnetic order down to at least 4 K in spite of the large first- and second-neighbor exchange interactions along chains and between chains, respectively. The antiferromagnetic (AFM) order gradually developing below 40 K nucleates around structural defects that locally cancel frustration. Two antiferromagnetic resonance modes mapped in the principal planes at 4~K are assigned to the very weakly interacting one-dimensional molecular chains in antiferromagnetic regions.
A molecular Mott insulator $kappa$-(ET)$_2$B(CN)$_4$ [ET = bis(ethylenedithio)tetrathiafulvalene] with a distorted triangular lattice exhibits a quantum disordered state with gapped spin excitation in the ground state. $^{13}$C nuclear magnetic reson ance, magnetization, and magnetic torque measurements reveal that magnetic field suppresses valence bond order and induces long-range magnetic order above a critical field $sim 8$ T. The nuclear spin-lattice relaxation rate $1/T_1$ shows persistent evolution of antiferromagnetic correlation above the transition temperature, highlighting a quantum spin liquid state with fractional excitations. The field-induced transition as observed in the spin-Peierls phase suggests that the valence bond order transition is driven through renormalized one-dimensionality and spin-lattice coupling.
We present the results of muon-spin relaxation measurements on the triangular lattice Heisenberg antiferromagnet $alpha$-KCrO$_{2}$. We observe sharp changes in behaviour at an ordering temperature of $T_{mathrm{c}}=23$ K, with an additional broad fe ature in the muon-spin relaxation rate evident at T=13 K, both of which correspond to features in the magnetic contribution to the heat capacity. This behaviour is distinct from both the Li- and Na- containing members of the series. These data may be qualitatively described with the established theoretical predictions for the underlying spin system.
The classical Heisenberg antiferromagnet on a triangular lattice with the single-ion anisotropy of the easy-axis type is theoretically investigated. The mean-field phase diagram in an external magnetic field is constructed. Three finite-temperature B erezinskii-Kosterlitz-Thouless transitions are found by the Monte Carlo simulations in zero field. The two upper transitions are related to the breaking of the discrete ${mathbb Z}_{6}$ symmetry group, while the lowest transition is associated with a quasi-long-range ordering of transverse components. The intermediate collinear phase between first and second transitions is the sliding phase predicted by J. V. Jose {it et al}. [Phys. Rev. B {bf 16}, 1217 (1977)].
152 - Natalia Chepiga , Ian Affleck , 2016
The phase diagram of the spin-1 chain with bilinear-biquadratic and next-nearest neighbor inter- actions, recently investigated by Pixley, Shashi and Nevidomskyy [Phys. Rev. B 90, 214426 (2014)], has been revisited in the light of results we have rec ently obtained on a similar model. Combining extensive Density Matrix Renormalization Group (DMRG) simulations with conformal-field theory arguments, we confirm the presence of the three phases identified by Pixley et al, a Haldane phase, a next-nearest neighbor (NNN) Haldane phase, and a dimerized phase, but we come to significantly different conclusions regarding the nature of the phase transitions to the dimerized phase: i) We provide numerical evidence of a continuous Ising transition between the NNN-Haldane phase and the dimerized phase; ii) We show that the tri-critical end point, where the continuous transition between the Haldane phase and the dimerized phase turns into a first order transition, is distinct from the triple point where the three phases meet; iii) Finally, we demonstrate that the tri-critical end point is in the same Wess-Zumino-Witten (WZW) SU(2) level 2 universality class as the continuous transition line that ends at this point
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا