ترغب بنشر مسار تعليمي؟ اضغط هنا

On the lexicographic degree of two-bridge knots

294   0   0.0 ( 0 )
 نشر من قبل Pierre-Vincent Koseleff
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the degree of polynomial representations of knots. We obtain the lexicographic degree for two-bridge torus knots and generalized twist knots. The proof uses the braid theoretical method developed by Orevkov to study real plane curves, combined with previous results from [KP10] and [BKP14]. We also give a sharp lower bound for the lexicographic degree of any knot, using real polynomial curves properties.



قيم البحث

اقرأ أيضاً

We study the degree of polynomial representations of knots. We give the lexicographic degree of all two-bridge knots with 11 or fewer crossings. First, we estimate the total degree of a lexicographic parametrisation of such a knot. This allows us to transform this problem into a study of real algebraic trigonal plane curves, and in particular to use the braid theoretical method developed by Orevkov.
We show that every two-bridge knot $K$ of crossing number $N$ admits a polynomial parametrization $x=T_3(t), y = T_b(t), z =C(t)$ where $T_k(t)$ are the Chebyshev polynomials and $b+deg C = 3N$. If $C (t)= T_c(t)$ is a Chebyshev polynomial, we call s uch a knot a harmonic knot. We give the classification of harmonic knots for $a le 3.$ Most results are derived from continued fractions and their matrix representations.
We prove that the expected value of the ratio between the smooth four-genus and the Seifert genus of two-bridge knots tends to zero as the crossing number tends to infinity.
214 - Jennifer Schultens 2001
We provide a new proof of the following results of H. Schubert: If K is a satellite knot with companion J and pattern L that lies in a solid torus T in which it has index k, then the bridge numbers satisfy the following: 1) The bridge number of K is greater than or equal to the product of k and the bridge number of J; 2) If K is a composite knot (this is the case k = 1), then the bridge number of K is one less than the sum of the bridge numbers of J and L.
In this short note we show the existence of an epimorphism between groups of $2$-bridge knots by means of an elementary argument using the Riley polynomial. As a corollary, we give a classification of $2$-bridge knots by Riley polynomials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا