ﻻ يوجد ملخص باللغة العربية
We describe a camera beam simulator for the LSST which is capable of illuminating a 60mm field at f/1.2 with realistic astronomical scenes, enabling studies of CCD astrometric and photometric performance. The goal is to fully simulate LSST observing, in order to characterize charge transport and other features in the thick fully depleted CCDs and to probe low level systematics under realistic conditions. The automated system simulates the centrally obscured LSST beam and sky scenes, including the spectral shape of the night sky. The doubly telecentric design uses a nearly unit magnification design consisting of a spherical mirror, three BK7 lenses, and one beam-splitter window. To achieve the relatively large field the beam-splitter window is used twice. The motivation for this LSST beam test facility was driven by the need to fully characterize a new generation of thick fully-depleted CCDs, and assess their suitability for the broad range of science which is planned for LSST. Due to the fast beam illumination and the thick silicon design [each pixel is 10 microns wide and over 100 microns deep] at long wavelengths there can be effects of photon transport and charge transport in the high purity silicon. The focal surface covers a field more than sufficient for a 40x40 mm LSST CCD. Delivered optical quality meets design goals, with 50% energy within a 5 micron circle. The tests of CCD performance are briefly described.
Over the last decade, quasar sample sizes have increased from several thousand to several hundred thousand, thanks mostly to SDSS imaging and spectroscopic surveys. LSST, the next-generation optical imaging survey, will provide hundreds of detections
In this white paper, we present the scientific cases for adding narrowband optical filters to the Large Synoptic Survey Telescope (LSST). LSST is currently planning to observe the southern sky in 6 broadband optical filters. Three of the four LSST sc
The Wide-Field Infrared Survey Telescope (WFIRST) is expected to launch in the mid-2020s. With its wide-field near-infrared (NIR) camera, it will survey the sky to unprecedented detail. As part of normal operations and as the result of multiple expec
The Large Synoptic Survey Telescope (LSST) can advance scientific frontiers beyond its groundbreaking 10-year survey. Here we explore opportunities for extended operations with proposal-based observing strategies, new filters, or transformed instrume
We discuss the synergy of Gaia and the Large Synoptic Survey Telescope (LSST) in the context of Milky Way studies. LSST can be thought of as Gaias deep complement because the two surveys will deliver trigonometric parallax, proper-motion, and photome