ترغب بنشر مسار تعليمي؟ اضغط هنا

Miniature Exoplanet Radial Velocity Array (MINERVA) I. Design, Commissioning, and First Science Results

471   0   0.0 ( 0 )
 نشر من قبل Jason Eastman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MINiature Exoplanet Radial Velocity Array (MINERVA) is a US-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7 m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. In this article, we describe the design of MINERVA including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, CA, and their on-sky performance is validated. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b -- a known hot-Jupiter with an inflated radius and misaligned orbit. The facility is now in the process of being relocated to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona, and science operations will begin in 2015.



قيم البحث

اقرأ أيضاً

The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVAs unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVAs robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrographs intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional sum-of-Gaussians instrumental profile: 1.8 m s$^{-1}$ over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.
The Minerva-Australis telescope array is a facility dedicated to the follow-up, confirmation, characterisation, and mass measurement of bright transiting planets discovered by the Transiting Exoplanet Survey Satellite (TESS) -- a category in which it is almost unique in the southern hemisphere. It is located at the University of Southern Queenslands Mount Kent Observatory near Toowoomba, Australia. Its flexible design enables multiple 0.7m robotic telescopes to be used both in combination, and independently, for high-resolution spectroscopy and precision photometry of TESS transit planet candidates. Minerva-Australis also enables complementary studies of exoplanet spin-orbit alignments via Doppler observations of the Rossiter-McLaughlin effect, radial velocity searches for non-transiting planets, planet searches using transit timing variations, and ephemeris refinement for TESS planets. In this first paper, we describe the design, photometric instrumentation, software, and science goals of Minerva-Australis, and note key differences from its Northern hemisphere counterpart -- the Minerva array. We use recent transit observations of four planets--WASP-2b, WASP-44b, WASP-45b, and HD 189733b to demonstrate the photometric capabilities of Minerva-Australis.
We present a computationally tractable implementation of spectro-perfectionism, a method which minimizes error imparted by spectral extraction. We develop our method in conjunction with a full raw reduction pipeline for the MINiature Exoplanet Radial Velocity Array (MINERVA), capable of performing both optimal extraction and spectro-perfectionism. Although spectro-perfectionism remains computationally expensive, our implementation can extract a MINERVA exposure in approximately $30,text{min}$. We describe our localized extraction procedure and our approach to point spread function fitting. We compare the performance of both extraction methods on a set of 119 exposures on HD122064, an RV standard star. Both the optimal extraction and spectro-perfectionism pipelines achieve nearly identical RV precision under a six-exposure chronological binning. We discuss the importance of reliable calibration data for point spread function fitting and the potential of spectro-perfectionism for future precise radial velocity exoplanet studies.
356 - F. Bouchy , R.F. Diaz , G. Hebrard 2012
High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.
The EXtreme PREcision Spectrograph (EXPRES) is an environmentally stabilized, fiber-fed, $R=137,500$, optical spectrograph. It was recently commissioned at the 4.3-m Lowell Discovery Telescope (LDT) near Flagstaff, Arizona. The spectrograph was desig ned with a target radial-velocity (RV) precision of 30$mathrm{~cm~s^{-1}}$. In addition to instrumental innovations, the EXPRES pipeline, presented here, is the first for an on-sky, optical, fiber-fed spectrograph to employ many novel techniques---including an extended flat fiber used for wavelength-dependent quantum efficiency characterization of the CCD, a flat-relative optimal extraction algorithm, chromatic barycentric corrections, chromatic calibration offsets, and an ultra-precise laser frequency comb for wavelength calibration. We describe the reduction, calibration, and radial-velocity analysis pipeline used for EXPRES and present an example of our current sub-meter-per-second RV measurement precision, which reaches a formal, single-measurement error of 0.3$mathrm{~m~s^{-1}}$ for an observation with a per-pixel signal-to-noise ratio of 250. These velocities yield an orbital solution on the known exoplanet host 51 Peg that matches literature values with a residual RMS of 0.895$mathrm{~m~s^{-1}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا