ترغب بنشر مسار تعليمي؟ اضغط هنا

Block magnetic excitations in the orbitally selective Mott insulator BaFe2Se3

161   0   0.0 ( 0 )
 نشر من قبل Martin Mourigal
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Iron pnictides and selenides display a variety of unusual magnetic phases originating from the interplay between electronic, orbital, and lattice degrees of freedom. Using powder inelastic neutron scattering on the two-leg ladder BaFe2Se3, we fully characterize the static and dynamic spin correlations associated with the Fe4 block state, an exotic magnetic ground state observed in this low-dimensional magnet and in Rb0.89Fe1.58Se2. All the magnetic excitations of the Fe4 block state predicted by an effective Heisenberg model with localized spins are observed below 300 meV and quantitatively reproduced. However, the data only account for 16 mub^2 per Fe2+, approximatively 2/3 of the total spectral weight expected for localized S=2 moments. Our results highlight how orbital degrees of freedom in iron-based magnets can conspire to stabilize an exotic magnetic state.



قيم البحث

اقرأ أيضاً

Magnetism in the insulating BaFe$_2$Se$_3$ was examined through susceptibility, specific heat, resistivity and neutron diffraction measurements. After formation of a short-range magnetic correlation, a long-range ordering was observed below $T_{rm N} sim 255$ K. The transition is obscured by bulk properties. Magnetic moments ($parallel a$) are arranged to form a Fe$_4$ ferromagnetic unit, and each Fe$_4$ stacks antiferromagnetically. This block magnetism is of the third type among magnetic structures of ferrous materials. The magnetic ordering drives unusually large distortion via magnetoelastic coupling.
Static electrical and magnetic properties of single crystal BaVS_3 were measured over the structural (T_S=240K), metal-insulator (T_MI=69K), and suspected orbital ordering (T_X=30K) transitions. The resistivity is almost isotropic both in the metalli c and insulating states. An anomaly in the magnetic anisotropy at T_X signals a phase transition to an ordered low-T state. The results are interpreted in terms of orbital ordering and spin pairing within the lowest crystal field quasi-doublet. The disordered insulator at T_X<T<T_MI is described as a classical liquid of non-magnetic pairs.
Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one dimension revealed the existence of an orbital-selective Mott phase (OSMP) with block spin order. Recent inelastic neutron scattering (INS) experiments on the BaFe$_2$Se$_3$ ladder compound confirmed the relevance of the block-OSMP. Moreover, the powder INS spectrum reveled an unexpected structure, containing both low-energy acoustic and high-energy optical modes. Here we present the theoretical prediction for the dynamical spin structure factor within a block-OSMP regime using the density-matrix renormalization group method. In agreement with experiments we find two dominant features: low-energy dispersive and high-energy dispersionless modes. We argue that the former represents the spin-wave-like dynamics of the block ferromagnetic islands, while the latter is attributed to a novel type of local on-site spin excitations controlled by the Hund coupling.
As an elementary particle the electron carries spin hbar/2 and charge e. When binding to the atomic nucleus it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies (e.g., s, p or d). Even if elect rons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital[1]. The hallmark of one-dimensional (1D) physics is a breaking up of the elementary electron into its separate degrees of freedom[2]. The separation of the electron into independent quasi-particles that carry either spin (spinons) or charge (holons) was first observed fifteen years ago[3]. Using Resonant Inelastic X-ray Scattering on the 1D Mott-insulator Sr2CuO3 we now observe also the orbital degree of freedom separating. We resolve an orbiton liberating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion of ~0.2 eV.
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle spectrum for the doped Hubbard model using cluster perturbation theory on superclusters. Starting from extremely low doping, we identify a heavily renormalized quasiparticle dispersion that immediately develops across the Fermi level, and a weakening polaronic side band at higher binding energy. The quasiparticle spectral weight roughly grows at twice the rate of doping in the low doping regime, but this rate is halved at optimal doping. In the heavily doped regime, we find both strong electron-hole asymmetry and a persistent presence of Mott spectral features. Finally, we discuss the applicability of the single-band Hubbard model to describe the evolution of nodal spectra measured by angle-resolved photoemission spectroscopy (ARPES) on the single-layer cuprate La$_{2-x}$Sr$_x$CuO$_4$ ($0 le x le 0.15$). This work benchmarks the predictive power of the Hubbard model for electronic properties of high-$T_c$ cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا