ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia-ESO Survey: CNO abundances in the open clusters Trumpler 20, NGC 4815, and NGC 6705

120   0   0.0 ( 0 )
 نشر من قبل Arnas Drazdauskas
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aim of this work is to determine C, N, and O abundances in stars of Galactic open clusters of the Gaia-ESO survey and to compare the observed abundances with those predicted by current stellar and Galactic evolution models. In this pilot paper, we investigate the first three intermediate-age open clusters. High-resolution spectra, observed with the FLAMES-UVES spectrograph on the ESO VLT telescope, were analysed using a differential model atmosphere method. Abundances of carbon were derived using the C2 band heads at 5135 and 5635.5 {AA}. The wavelength interval 6470- 6490 {AA}, with CN features, was analysed to determine nitrogen abundances. Oxygen abundances were determined from the [O i] line at 6300 {AA}. The mean values of the elemental abundances in Trumpler 20 as determined from 42 stars are: [Fe/H] = 0.10 +- 0.08 (s.d.), [C/H] = -0.10 +- 0.07, [N/H] = 0.50 +- 0.07, and consequently C/N = 0.98 +- 0.12. We measure from five giants in NGC 4815: [Fe/H] = -0.01 +- 0.04, [C/H] = -0.17 +- 0.08, [N/H] = 0.53 +- 0.07, [O/H] = 0.12 +- 0.09, and C/N = 0.79 +- 0.08. We obtain from 27 giants in NGC 6705: [Fe/H] = 0.0 +- 0.05, [C/H] = -0.08 +- 0.06, [N/H] = 0.61 +- 0.07, [O/H] = 0.13 +- 0.05, and C/N = 0.83 +- 0.19. The C/N ratios of stars in the investigated open clusters were compared with the ratios predicted by stellar evolutionary models. For the corresponding stellar turn-off masses from 1.9 to 3.3 solar masses, the observed C/N ratio values are very close to the predictions of standard first dredge-up models as well as to models of thermohaline extra-mixing. The average [O/H] abundance ratios of NGC 4815 and NGC 6705 are compared with the predictions of two Galactic chemical evolution models. The data are consistent with the evolution at the solar radius within the errors.



قيم البحث

اقرأ أيضاً

Rapidly rotating, low-mass members of eclipsing binary systems have measured radii significantly larger than predicted by standard models. It has been proposed that magnetic activity is responsible for radius inflation. By estimating the radii of low -mass stars in three young clusters (NGC 2264, NGC 2547, NGC 2516, with ages of 5, 35 and 140 Myr respectively), we aim to establish whether similar radius inflation is seen in single, magnetically active stars. We use radial velocities from the Gaia-ESO Survey (GES) and published photometry to establish cluster membership and combine GES measurements of vsini with published rotation periods to estimate average radii for groups of fast-rotating cluster members as a function of their luminosity and age. The average radii are compared with the predictions of both standard evolutionary models and variants that include magnetic inhibition of convection and starspots. At a given luminosity, the stellar radii in NGC 2516 and NGC 2547 are larger than predicted by standard evolutionary models at the ages of these clusters. The discrepancy is least pronounced and not significant ~10 percent) in ZAMS stars with radiative cores, but more significant in lower-mass, fully convective pre main-sequence cluster members, reaching 30+/-10 percent. The uncertain age and distance of NGC 2264 preclude a reliable determination of any discrepancy for its members. The median radii we have estimated for low-mass fully convective stars in the older clusters are inconsistent (at the 2-3 sigma level) with non-magnetic evolutionary models and more consistent with models that incorporate the effects of magnetic fields or dark starspots. The available models suggest this requires either surface magnetic fields exceeding 2.5 kG, spots that block about 30 per cent of the photospheric flux, or a more moderate combination of both. [Abridged]
118 - M.J Rain , G. Carraro , J. Ahumada 2020
We present a study, based on Gaia DR2, of the population of blue straggler stars (BSS) in the open clusters Trumpler 5, Trumpler 20, and NGC 2477. All candidates were selected according to their position in the color-magnitude diagram, to their prope r motion components, and to their parallax. We also looked for yellow stragglers, i.e., possible evolved blue stragglers. We found that Trumpler 5 hosts a large BSS population, which allowed us to analyze their radial distribution as a probe of the clusters dynamical status. The BSS distribution was compared with that of red giant branch stars (RGB) to evaluate mass segregation. Our results indicate that blue straggler stars are not more centrally concentrated than RGB stars in any of the clusters. The radial distribution of BSS in Trumpler 5 is flat. Additionally, using a multi-epoch radial velocity survey conducted with the high-resolution spectrograph FLAMES/GIRAFFE at VLT, we measured the radial velocities of a sample of stragglers, for the sake of comparison with the mean radial velocity and the velocity dispersion of the clusters. Based on the radial velocity variations for different epochs, we roughly classified these stars as possible close-or long-period binaries.
Context: Trumpler 23 is a moderately populated, intermediate-age open cluster within the solar circle at a Rgc ~6 kpc. It is in a crowded field very close to the Galactic plane and the color-magnitude diagram shows significant field contamination and possible differential reddening; it is a relatively understudied cluster for these reasons, but its location makes it a key object for determining Galactic abundance distributions. Aims: New data from the Gaia-ESO Survey enable the first ever radial velocity and spectroscopic metallicity measurements for this cluster. We aim to use velocities to isolate cluster members, providing more leverage for determining cluster parameters. Methods: Gaia-ESO Survey data for 167 potential members have yielded radial velocity measurements, which were used to determine the systemic velocity of the cluster and membership of individual stars. Atmospheric parameters were also used as a check on membership when available. Literature photometry was used to re-determine cluster parameters based on radial velocity member stars only; theoretical isochrones are fit in the V, V-I diagram. Cluster abundance measurements of ten radial-velocity member stars with high-resolution spectroscopy are presented for 24 elements. These abundances have been compared to local disk stars, and where possible placed within the context of literature gradient studies. Results: We find Trumpler 23 to have an age of 0.80 +/- 0.10 Gyr, significant differential reddening with an estimated mean cluster E(V-I) of 1.02 +0.14/-0.09, and an apparent distance modulus of 14.15 +/- 0.20. We find an average cluster metallicity of [Fe/H] = 0.14 +/- 0.03 dex, a solar [alpha/Fe] abundance, and notably subsolar [s-process/Fe] abundances.
We present the first extensive spectroscopic study of the global population in star clusters Trumpler~16, Trumpler~14 and Collinder~232 in the Carina Nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. In addition to the standard h omogeneous Survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. We find about four hundred good candidate members ranging from OB types down to slightly sub-solar masses. About one-hundred heavily-reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The spectroscopically-derived temperatures for nearly 300 low-mass members allows the inference of individual extinction values, and the study of the relative placement of stars along the line of sight. We find a complex spatial structure, with definite clustering of low-mass members around the most massive stars, and spatially-variable extinction. By combining the new data with existing X-ray data we obtain a more complete picture of the three-dimensional spatial structure of the Carina clusters, and of their connection to bright and dark nebulosity, and UV sources. The identification of tens of background giants enables us also to determine the total optical depth of the Carina nebula along many sightlines. We are also able to put constraints on the star-formation history of the region, with Trumpler~14 stars found to be systematically younger than stars in other sub-clusters. We find a large percentage of fast-rotating stars among Carina solar-mass members, which provide new constraints on the rotational evolution of pre-main-sequence stars in this mass range.
It has recently been suggested that all giant stars with mass below 2 $M_{odot}$ suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). We test if the above result can be confirmed in a s ample of RC and RGB stars that are members of open clusters. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 $M_{odot}$). These observations are compared with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. In six clusters, we find about 35% RC stars with Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation was for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that the possible Li production is ubiquitous. For about 65% RC giants we can only determine abundance upper limits that could be hiding very low Li abundances. Our results indicate a possible production of Li during the RC, at levels that would not classify the stars as Li rich. Determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models with an additional mixing episode close to the He flash.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا