ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium Kinetic Modeling of Sintering of a Layer of Dispersed Nanocrystals

104   0   0.0 ( 0 )
 نشر من قبل Vladimir Privman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a kinetic Monte Carlo modeling study of nanocrystal layer sintering. Features that are of interest for the dynamics of the layer as a whole, especially the morphology of the evolving structure, are considered. It is found that the kinetics of sintering is not entirely a local process, with the layer morphology affected by the kinetics in a larger than few-particle neighborhood. Consideration of a single layer of particles makes the numerics manageable and allows visualization of the results, as well as numerical simulations of several realizations for statistical averaging of properties of interest. We identify optimal regimes for sintering, considering several particle size distributions and temperature control protocols.



قيم البحث

اقرأ أيضاً

Kinetic Monte Carlo approach is developed to study aspects of sintering of dispersed nanoparticles of bimodal size distributions. We explore mechanisms of neck development when sintering is initiated at elevated temperatures for nanosize crystalline surfaces of particles of different sizes. Specifically, the role of smaller particles fitting between larger particles, on the sintering of the latter is considered. Formation of stable necks bridging particles at the nanoscale was found to be governed by layering or clustering mechanisms at the facing surfaces, with clustering leading to a much faster formation of the bridging structure. Temperature, particle sizes and local arrangement, as well as other geometrical factors were found to have a profound effect on sintering mediated by a smaller particle placed in a void between larger particles.
We model within the kinetic Monte Carlo method the initiation of neck formation and then later evolution of the resulting bridging regions for configurations involving small particles initially positioned fitted between large particles for situations typical for sintering of FCC nanocrystals, e.g., noble-metal nanoparticles. Neck initiation mechanisms by layering or clustering are identified. The stability of the resulting bridging configurations depends on several parameters, notably, on the relative small to large particle size ratio, and we explain recent experimental findings on improved sintering achieved for certain bimodal size distributions.
A nonlinear model representing the tribological problem of a thin solid lubricant layer between two sliding periodic surfaces is used to analyze the phenomenon of hysteresis at pinning/depinning around a moving state rather than around a statically p inned state. The cycling of an external driving force F_ext is used as a simple means to destroy and then to recover the dynamically pinned state previously discovered for the lubricant center-of-mass velocity. De-pinning to a quasi-freely sliding state occurs either directly, with a single jump, or through a sequence of discontinuous transitions. The intermediate sliding steps are reminiscent of phase-locked states and stick-slip motion in static friction, and can be interpreted in terms of the appearance of travelling density defects in an otherwise regular arrangement of kinks. Re-pinning occurs more smoothly, through the successive disappearance of different travelling defects. The resulting bistability and multistability regions may also be explored by varying mechanical parameters other than F_ext, e.g. the sliding velocity or the corrugation amplitude of the sliders.
Single-layer atom or vacancy clusters in the presence of electromigration are studied theoretically assuming an isotropic medium. A variety of distinctive behaviors distinguish the response in the three standard limiting cases of periphery diffusion (PD), terrace diffusion (TD), and evaporation-condensation (EC). A general model provides power laws describing the size dependence of the drift velocity in these limits, consistent with established results in the case of PD. The validity of the widely used quasistatic limit is calculated. Atom and vacancy clusters drift in opposite directions in the PD limit but in the same direction otherwise. In absence of PD, linear stability analysis reveals a new type of morphological instability, not leading to island break-down. For strong electromigration, Monte Carlo simulations show that clusters then destabilize into slits, in contrast to splitting in the PD limit. Electromigration affects the diffusion coefficient of the cluster and morphological fluctuations, the latter diverging at the instability threshold. An instrinsic attachment-detachment bias displays the same scaling signature as PD in the drift velocity.
A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as well as the FEM calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of a sample constrained by a rigid substrate is simulated. The constrained sintering results in a larger number of pores near the substrate, as well as anisotropic sintering shrinkage, with significantly enhanced strain in the central upper part of the sample surface, and minimal strain at the edges near the substrate. All these features have also previously been observed experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا