ﻻ يوجد ملخص باللغة العربية
It is difficult to relate the properties of liquids and glasses directly to their structure because of complexity in the structure which defies precise definition. The potential energy landscape (PEL) approach is a very insightful way to conceptualize the structure-property relationship in liquids and glasses, particularly on the effect of temperature and history. However, because of the highly multi-dimensional nature of the PEL it is hard to determine, or even visualize, the actual details of the energy landscape. In this article we introduce a modified concept of the local energy landscape (LEL) which is limited in phase space, and demonstrate its usefulness using molecular dynamics simulation on a simple liquid at high temperatures. The local energy landscape is given as a function of the local coordination number, the number of the nearest neighbor atoms. The excitations in the LEL corresponds to the so-called beta-relaxation process. The LEL offers a simple but useful starting point to discuss complex phenomena in liquids and glasses.
We propose a method for the simulation of particle fragmentation based on the calculation of the energy landscape inside the particle. The landscape of strain energy is calculated in terms of internal stress using the principles of damage and fractur
We study the low temperature static and dynamical properties of the classical bond-disordered antiferromagnetic Heisenberg model on the kagome lattice. This model has recently been shown to host a new type of spin liquid exhibiting an exponentially l
The free energy landscape of mean field marginal glasses is ultrametric. We demonstrate that this feature remains in finite three dimensional systems by finding sets of minima which are nearby in configuration space. By calculating the distance betwe
We report a molecular dynamics simulation demonstrating that the Smectic B crystalline phase (Cr-B), commonly observed in mesogenic systems of anisotropic molecules, can be formed by a system of identical particles interacting via a spherically symme
It is analyzed whether the potential energy landscape of a glass-forming system can be effectively mapped on a random model which is described in statistical terms. For this purpose we generalize the simple trap model of Bouchaud and coworkers by div