ﻻ يوجد ملخص باللغة العربية
SrTiO$_{3}$ undergoes a cubic-to-tetragonal phase transition at 105K. This antiferrodistortive transition is believed to be in competition with incipient ferroelectricity. Substituting strontium by isovalent calcium induces a ferroelectric order. Introducing mobile electrons to the system by chemical non-isovalent doping, on the other hand, leads to the emergence of a dilute metal with a superconducting ground state. The link between superconductivity and the other two instabilities is an open question, which gathers momentum in the context of the growing popularity of the paradigm linking unconventional superconductors and quantum critical points. We present a set of specific-heat, neutron-scattering and dielectric permittivity and polarization measurements on Sr$_{1-x}$Ca$_{x}$TiO$_{3}$ ($0<x<0.009$) and a low-temperature electric conductivity in Sr$_{0.9978}$Ca$_{0.0022}$TiO$_{3-delta}$. Calcium substitution was found to enhance the transition temperature for both anti-ferrodistortive and ferroelectric transitions. Moreover, we find that Sr$_{0.9978}$Ca$_{0.0022}$TiO$_{3-delta}$ has a superconducting ground state. The critical temperature in this rare case of a superconductor with a ferroelectric parent, is slightly lower than in SrTiO$_{3-delta}$ of comparable carrier concentration. A three-dimensional phase diagram for Sr$_{1-x}$Ca$_{x}$TiO$_{3-delta}$ tracking the three transition temperatures as a function of x and $delta$ results from this study, in which ferroelectric and superconducting ground states are not immediate neighbours.
We have measured magnetic susceptibility and resistivity of Sr$_{1-x}$Y$_x$CoO$_{3-delta}$ ($x=$ 0.1, 0.15, 0.2, 0.215, 0.225, 0.25, 0.3, and 0.4), and have found that Sr$_{1-x}$Y$_x$CoO$_{3-delta}$ is a room temperature ferromagnet with a Curie temp
By using laboratory x-ray photoemission spectroscopy (XPS) and hard x-ray photoemission spectroscopy (HX-PES) at a synchrotron facility, we report an empirical semi-quantitative relationship between the valence/core-level x-ray photoemission spectral
We present the electronic structure of Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3} investigated by high-resolution photoemission spectroscopy. In the vicinity of Fermi level, it was found that the electronic structure were composed of a Cr 3d local state
The crystal structure of Ca_{2-x}Sr_xRuO_4 with 0.2 < x < 1.0 has been studied by diffraction techniques and by high resolution capacitance dilatometry as a function of temperature and magnetic field. Upon cooling in zero magnetic field below about 2
SrTiO$_{3}$, a quantum paraelectric, becomes a metal with a superconducting instability after removal of an extremely small number of oxygen atoms. It turns into a ferroelectric upon substitution of a tiny fraction of strontium atoms with calcium. Th